Skip to main content
Log in

Temperature nonuniformity management in heat sinks through applying counter-flow design complex minichannels

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Thanks to the electronic industrial revolution, miniaturization, which is a trend to manufacture smaller products and devices, has been extended to hardware components. In these devices, the heat flux magnitude increases due to the smaller surface area. Therefore, heat dissipation and temperature uniformity are crucial issues that must be managed precisely, otherwise destructive effects on system performance and device lifespan are unavoidable. Heat sinks are efficient equipment utilized to solve these dire consequences. In this study, to improve the temperature uniformity of electronic components, novel minichannels, including straight walls with wavy fins (SWS) and wavy walls with straight fins (WSW), were examined with counter-flow patterns. The observations imply that these novel minichannels bring 18.1–40.3% decrease of the base temperature under the heat flux of 100 kW m−2. It is also revealed that using the novel minichannels can increase the temperature uniformity up to 93.1%. In addition, overall hydrothermal performance can be enhanced as high as 1.64 under the pumping power of 0.0374 W. It was also found that the use of WSW models leads to lower magnitudes of pumping power compared to SWS models. It is concluded that applying the proposed minichannels could be an efficient approach to manage temperature non-uniformity in heat sinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ac :

frontal area [m2]

At :

wetted area [m2]

cp :

specific heat at constant pressure [J kg−1 K−1]

Dh :

hydraulic diameter [m]

f:

friction factor

h:

convective heat transfer coefficient [W m−2 K−1]

k:

thermal conductivity [W m−1 K−1]

l :

minichannel length [m]

q:

heat flux [W m−2]

m:

mass flow rate [kg s−1]

Nu:

Nusselt number

Re:

Reynolds number

p:

pressure [Pa]

PP :

pumping power [W]

T:

temperature [K]

u, v:

velocity [m s−1]

x:

span-wise

y:

normal

z:

stream-wise

ρ :

density[kg m−3]

μ :

dynamicviscosity [Pas]

η :

performance index

θ :

temperatureuniformity

avg.:

average

b:

base

in:

inlet

out:

outlet

max:

maximum

min:

minimum

s:

solid

SWS:

straight-wavy-straight

WSW:

wavy-straight-wavy

References

  1. X. Guo, Y. Fan and L. Luo, Chem. Eng. J., 227, 116 (2013).

    Article  CAS  Google Scholar 

  2. H. Y. Wu and P. Cheng, Int. J. Heat Mass Transf., 46, 2547 (2003).

    Article  CAS  Google Scholar 

  3. R. Roth, G. Lenk, K. Cobry and P. Woias, Int. J. Heat Mass Transf., 67, 1 (2013).

    Article  CAS  Google Scholar 

  4. A. L. The, Y. W. Phoo, W. M. Chin, E. H. Ooi and J. J. Foo, Chem. Eng. Res. Des., 156, 226 (2020).

    Article  Google Scholar 

  5. G. Wang, D. Niu, F. Xie, Y. Wang, X. Zhao and G. Ding, Appl. Therm. Eng., 85, 61 (2015).

    Article  Google Scholar 

  6. H. E. Ahmed, Appl. Therm. Eng., 102, 1422 (2016).

    Article  Google Scholar 

  7. M. Khoshvaght-Aliabadi, S. Deldar and S. M. Hassani, Int. J. Mech. Sci., 148, 442 (2018).

    Article  Google Scholar 

  8. A. Sakanova, C. C. Keian and J. Zhao, Int. J. Heat Mass Transf., 89, 59 (2015).

    Article  CAS  Google Scholar 

  9. M. Khoshvaght-Aliabadi, E. Ahmadian and O. Sartipzadeh, Int. Commun. Heat Mass Transf., 81, 19 (2017).

    Article  CAS  Google Scholar 

  10. M. Salami, M. Khoshvaght-Aliabadi and A. Feizabadi, J. Therm. Anal. Calorim., 138, 3159 (2019).

    Article  CAS  Google Scholar 

  11. J. D. Zhou, M. Hatami, D. X. Song and D. Jing, Int. J. Heat Mass Transf., 103, 715 (2016).

    Article  Google Scholar 

  12. L. Chai, G. D. Xia, L. Wang, M. Zhou and Z. Cui, Int. J. Heat Mass Transf., 62, 741 (2013).

    Article  Google Scholar 

  13. Y. L. Zhai, G. D. Xia, X. F. Liu and Y. F. Li, Int. J. Heat Mass Transf., 84, 293 (2015).

    Article  Google Scholar 

  14. G. D. Xia, J. Jiang, J. Wang, Y. L. Zhai and D. D. Ma, Int. J. Heat Mass Transf., 80, 439 (2015).

    Article  Google Scholar 

  15. C. A. Rubio-Jimenez, S. G. Kandlikar and A. Hernandez-Guerrero, IEEE Trans. Compon. Packaging. Manuf. Technol., 2, 825 (2012).

    Article  Google Scholar 

  16. C. A. Rubio-Jimenez S. G. Kandlikar and A. Hernandez-Guerrero, IEEE Trans. Compon. Packaging. Manuf. Technol., 3, 86 (2013).

    Article  Google Scholar 

  17. M. Vilarrubí, S. Riera, M. Ibañez, M. Omri, G. Laguna, L. Fréchette and J. Barraua, Int. J. Therm. Sci., 132, 424 (2018).

    Article  Google Scholar 

  18. S. Feng, Y. Yan, H. Li, Z. He and L. Zhang, Int. J. Heat Mass Transf., 156, 119675 (2020).

    Article  CAS  Google Scholar 

  19. S. Feng, Y. Yan, H. Li, Z. Yang, L. Li and L. Zhang, Appl. Therm. Eng., 153, 748 (2019).

    Article  CAS  Google Scholar 

  20. S. Feng, Y. Yan, H. Li, F. Xu and L. Zhang, Int. J. Heat Mass Transf., 159, 120118 (2020).

    Article  CAS  Google Scholar 

  21. D. Lorenzini-Gutierrez and S. G. Kandlikar, J. Electron. Packag., 136, 021007 (2014).

    Article  Google Scholar 

  22. J. L. Gonzalez-Hernandez, S. G. Kandlikar and A. Hernandez-Guerrero, Heat Transf. Eng., 37, 1369 (2016).

    Article  CAS  Google Scholar 

  23. P. Li, D. Guo and X. Huang, Int. J. Heat Mass Transf., 146, 118846 (2020).

    Article  Google Scholar 

  24. C. Leng, X. D. Wang, T. H. Wang and W. M. Yan, Energy Convers. Manag., 93, 141 (2015).

    Article  Google Scholar 

  25. M. Khoshvaght-Aliabadi and F. Hormozi, Arab. J. Sci. Eng., 38, 3515 (2013).

    Article  CAS  Google Scholar 

  26. M. Bahiraei, N. Mazaheri and M. R. Daneshyar, Appl. Therm. Eng., 183, 116159 (2021).

    Article  CAS  Google Scholar 

  27. R. L. Webb, Int. J. Heat Mass Transf., 24, 715 (1981).

    Article  Google Scholar 

  28. A. Tikadar, T. C. Paul, S. K. Oudah, N. M. Abdulrazzaq, A. S. Salman and J. A. Khan, Int. Commun. Heat Mass Transf., 111, 104447 (2020).

    Article  Google Scholar 

  29. Z. Chamanroy and M. Khoshvaght-Aliabadi, Int. J. Therm. Sci., 146, 106071 (2019).

    Article  Google Scholar 

  30. S. M. Hassani, M. Khoshvaght-Aliabadi and S. H. Mazloumi, Chem. Eng. Sci., 191, 436 (2018).

    Article  CAS  Google Scholar 

  31. M. Khoshvaght-Aliabadi, A. Feizabadi and S. F. Khaligh, Int. J. Mech. Sci., 157, 25 (2019).

    Article  Google Scholar 

  32. M. Khoshvaght-Aliabadi and A. Feizabadi, Sol Energy, 199, 552 (2020).

    Article  Google Scholar 

  33. A. Tikadar, S. K. Oudah, T. C. Paul, A. S. Salman, A. K. M. M. Morshed and J. A. Khan, Appl. Therm. Eng., 153, 15 (2019).

    Article  Google Scholar 

  34. G. Xia, L. Chai, H. Wang, M. Zhou and Z. Cui, Appl. Therm. Eng., 31, 1208 (2011).

    Article  Google Scholar 

  35. L. Chai, G. Xia, M. Zhou, J. Li and J. Qi, Appl. Therm. Eng., 51, 880 (2013).

    Article  Google Scholar 

  36. Y. F. Li, G. D. Xia, D. D. Ma, Y. T. Jia and J. Wang, Int. J. Heat Mass Transf., 98, 17 (2016).

    Article  Google Scholar 

  37. I. A. Ghani, N. Kamaruzaman and N. A. C. Sidik, Int. J. Heat Mass Transf., 108, 1969 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Khoshvaght-Aliabadi.

Ethics declarations

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoshvaght-Aliabadi, M., Feizabadi, A., Salimi, A. et al. Temperature nonuniformity management in heat sinks through applying counter-flow design complex minichannels. Korean J. Chem. Eng. 39, 1436–1449 (2022). https://doi.org/10.1007/s11814-022-1071-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1071-x

Keywords

Navigation