Skip to main content

Advertisement

Log in

Pyrolysis characteristics and quantitative kinetic model of microalgae Tetralselmis sp.

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Pyrolysis of microalgal biomass is a potential strategy for biofuel production. In this work, the pyrolysis characteristics of microalgae, Tetraselmis sp., were systematically explored under isothermal and nonisothermal conditions. Analysis of nonisothermal decomposition of microalgae under nitrogen atmosphere at different heating rates (5, 10, 15, and 20 °C min−1) revealed that the conversion of microalgae was significantly affected by the heating rate and reached ~90% at approximately 500 °C. The mean activation energy for the pyrolysis of Tetraselmis sp. was calculated using model-free Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods. Microalgae pyrolysis in a micro-tubing reactor was performed at various temperatures (360-400 °C) and for different reaction times (0.5-3.0 min). The results indicated that the maximum yield of biocrude (49.5 wt%) was attained during pyrolysis at 400 °C for 2 min. It was established that the chemical composition of the biocrude was significantly influenced by the pyrolysis conditions. A quantitative model was used to evaluate the composition of carbohydrates, proteins, and lipids in the microalgae. This facilitated the determination of individual biochemical components in the pyrolytic products. Furthermore, the time- and temperature-dependent yields of the solid residue, biocrude, and gas were predicted, providing critical information for microalgal pyrolysis design, control, and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ceylan and D. Kazan, Bioresour. Technol., 187, 1 (2015).

    Article  CAS  Google Scholar 

  2. A. F. Ferreira and A. P. Soares Dias, J. Chem. Technol. Biotechnol., 95, 3270 (2020).

    Article  CAS  Google Scholar 

  3. C. Yang, R. Li, B. Zhang, Q. Qiu, B. Wang, H. Yang, Y. Ding and C. Wang, Fuel Process. Technol., 186, 53 (2019).

    Article  CAS  Google Scholar 

  4. R. Gautam and R. Vinu, React. Chem. Eng., 5, 1320 (2020).

    Article  CAS  Google Scholar 

  5. K. Wang and R. C. Brown, Green Chem., 15, 675 (2013).

    Article  CAS  Google Scholar 

  6. T. K. Vo, S.-S. Kim, H. V. Ly, E. Y. Lee, C.-G. Lee and J. Kim, Bioresour. Technol., 241, 610 (2017).

    Article  CAS  Google Scholar 

  7. T. K. Vo, O. K. Lee, E. Y. Lee, C. H. Kim, J.-W. Seo, J. Kim and S.-S. Kim, J. Chem. Eng., 306, 763 (2016).

    Article  CAS  Google Scholar 

  8. P. Supaporn, H. V. Ly, S.-S. Kim and S. H. Yeom, Environ. Eng. Res., 24, 202 (2019).

    Article  Google Scholar 

  9. X. Lu, H. Guo, H. Que, D. Wang, D. Liang, T. He, H. M. Robin, C. Xu, X. Zhang and X. Gu, J. Anal. Appl. Pyrolysis., 154, 105013 (2021).

    Article  CAS  Google Scholar 

  10. B. Qu, A. Li, Y. Qu, T. Wang, Y. Zhang, X. Wang, Y. Gao, W. Fu and G. Ji, J. Anal. Appl. Pyrolysis., 152, 104949 (2020).

    Article  CAS  Google Scholar 

  11. C. Zhang, Z. Zhang, L. Zhang, H. Zhang, Y. Wang, S. Hu, J. Xiang and X. Hu, Biomass Bioenergy, 143, 105801 (2020).

    Article  CAS  Google Scholar 

  12. J. Lai, Y. Meng, Y. Yan, E. Lester, T. Wu and C. H. Pang, Korean J. Chem. Eng., 38, 2235 (2021).

    Article  CAS  Google Scholar 

  13. K. M. Qureshi, A. N. K. Lup, S. Khan, F. Abnisa and W. M. A. W. Daud, Korean J. Chem. Eng., 38, 1797 (2021).

    Article  CAS  Google Scholar 

  14. Z. Hu, X. Ma and C. Chen, Bioresour. Technol., 107, 487 (2012).

    Article  CAS  Google Scholar 

  15. H. Li, Z. Liu, Y. Zhang, B. Li, H. Lu, N. Duan, M. Liu, Z. Zhu and B. Si, Bioresour. Technol., 154, 322 (2014).

    Article  CAS  Google Scholar 

  16. Q.-V. Bach and W.-H. Chen, Bioresour. Technol., 246, 88 (2017).

    Article  CAS  Google Scholar 

  17. T. K. Vo, H. V. Ly, O. K. Lee, E. Y. Lee, C. H. Kim, J.-W. Seo, J. Kim and S.-S. Kim, Energy, 118, 369 (2017).

    Article  CAS  Google Scholar 

  18. A. K. Varma, N. Lal, A. K. Rathore, R. Katiyar, L. S. Thakur, R. Shankar and P. Mondal, Energy, 218, 119404 (2021).

    Article  CAS  Google Scholar 

  19. X. Guo, J. Cai and X. Yu, J. Anal. Appl. Pyrolysis., 154, 104997 (2021).

    Article  CAS  Google Scholar 

  20. R. K. Mishra, Q. Lu and K. Mohanty, J. Anal. Appl. Pyrolysis., 150, 104887 (2020).

    Article  CAS  Google Scholar 

  21. J. H. Choi, S.-S. Kim, J. Kim and H. C. Woo, Energy, 170, 239 (2019).

    Article  CAS  Google Scholar 

  22. H. H. Muigai, B. J. Choudhury, P. Kalita and V. S. Moholkar, Biomass Bioenergy, 143, 105839 (2020).

    Article  CAS  Google Scholar 

  23. Q.-V. Bach and W.-H. Chen, Energy Convers. Manag., 131, 109 (2017).

    Article  CAS  Google Scholar 

  24. Y. Hong, C. Xie, W. Chen, X. Luo, K. Shi and T. Wu, Renew. Energy, 145, 2159 (2020).

    Article  CAS  Google Scholar 

  25. Z. H. Kim and P. Hanwool, J. Microbiol. Biotechnol., 26, 1098 (2016).

    Article  CAS  Google Scholar 

  26. Z. Movasaghi, S. Rehman and D. I. ur Rehman, Appl. Spectrosc. Rev., 43, 134 (2008).

    Article  CAS  Google Scholar 

  27. B. E. Eboibi, D. M. Lewis, P. J. Ashman and S. Chinnasamy, RSC Adv., 5, 20193 (2015).

    Article  CAS  Google Scholar 

  28. H. V. Ly, S.-S. Kim, J. Kim, J. H. Choi and H. C. Woo, Energy Convers. Manag., 106, 260 (2015).

    Article  CAS  Google Scholar 

  29. X. Yang, R. Zhang, J. Fu, S. Geng, J. J. Cheng and Y. Sun, Bioresour. Technol., 163, 335 (2014).

    Article  CAS  Google Scholar 

  30. S. K. Maity, Renew. Sustain. Energy Rev., 43, 1427 (2015).

    Article  CAS  Google Scholar 

  31. T. K. Vo, J.-S. Cho, S.-S. Kim, J.-H. Ko and J. Kim, Energy Convers. Manag., 153, 48 (2017).

    Article  CAS  Google Scholar 

  32. S. Grierson, V. Strezov, G. Ellem, R. McGregor and J. Herbertson, J. Anal. Appl. Pyrolysis., 85, 118 (2009).

    Article  CAS  Google Scholar 

  33. T. Aysu, N. A. Abd Rahman and A. Sanna, Energy, 103, 205 (2016).

    Article  CAS  Google Scholar 

  34. P. Biller and A. B. Ross, Bioresour. Technol., 102, 215 (2011).

    Article  CAS  Google Scholar 

  35. P. J. Valdez V. J. Tocco and P. E. Savage, Bioresour. Technol., 163, 123 (2014).

    Article  CAS  Google Scholar 

  36. P. J. Valdez and P. E. Savage, Algal Res., 2, 416 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program (NRF-2019R1A2C1090693) and the Engineering Research Center of Excellence Program (NRF-2021R1A5A6002853) through the National Research Foundation (NRF) funded by the Ministry of Science and ICT, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung-Soo Kim or Jinsoo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, T.K., Kim, SS. & Kim, J. Pyrolysis characteristics and quantitative kinetic model of microalgae Tetralselmis sp.. Korean J. Chem. Eng. 39, 1478–1486 (2022). https://doi.org/10.1007/s11814-022-1064-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1064-9

Keywords

Navigation