Skip to main content
Log in

Efficient removal of Cr(VI) by spent coffee grounds: Molecular adsorption and reduction mechanism

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Spent coffee ground (SCG), a byproduct from the soluble coffee industry, is usually discarded as waste. The reutilization of SCG for the removal of toxic heavy metal ions is a novel research direction. Until recently, the molecular adsorption and reduction mechanism of Cr(VI) on SCG was barely investigated. In this study, SCG was used for the efficient removal of Cr(VI) at a concentration range of 2`-100 mg/L, with a maximum Cr(VI) uptake up to 36.2 mg/ g. Structural characterization and ATR-FTIR analysis indicated that SCG possessed abundant surface O and N- containing functional groups. The corresponding adsorption and reduction effects on the Cr(VI) removal were investigated by the carboxyl and hydroxyl groups elimination experiments and ATR-FTIR characterization, respectively. The results revealed that HCrO4 ions were preliminarily adsorbed on SCG surfaced-COOH/-OH/-NH by the formation of hydrogen bond (SCG surfaced-COOH/-OH/-NH-HCrO44), and quickly reduced to Cr(III) by the electron denoted by phenolic compounds, and then in-situ immobilized on the surface of SCG. The effect of Cr(VI) concentration, coexisting ions, and humic acid was systematically studied to optimize the removal of Cr(VI) wastewater. Column experiments provided a new substitution to restore the Cr(VI)-containing groundwater for the permeable reactive barrier application. Thus, the proposed study uncovered the intrinsic Cr(VI) removal mechanism at the molecular level and explored the application of SCG for the efficient removal of Cr(VI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Kaprara, P. Seridou, V. Tsiamili, M. Mitrakas, G. Vourlias, I. Tsiaoussis, G. Kaimakamis, E. Pavlidou, N. Andritsos and K. Simeonidis, J. Hazard. Mater., 262, 606 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. T. Liu, L. Zhao, D. Sun and X. Tan, J. Hazard. Mater., 184, 724 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Y. J. Lee, C. G. Lee, J. K. Kang, S. J. Park and P. J. J. Alvarez, Environ. Sci. Water Res. Technol., 7, 222 (2021).

    Article  CAS  Google Scholar 

  4. C. G. Lee, J. A. Park, J. W. Choi, S. O. Ko and S. H. Lee, Water Air Soil Pollut., 227, 287 (2016).

    Article  CAS  Google Scholar 

  5. J. Du, J. Bao, C. Lu and D. Werner, Water Res., 102, 73 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Y. Mu, Z. Ai, L. Zhang and F. Song, ACS Appl. Mater. Inter., 7, 1997 (2015).

    Article  CAS  Google Scholar 

  7. D. Rodríguez-Padrón, M. J. Muñoz-Batista, H. Li, K. Shih, A. M. Balu, A. Pineda and R. Luque, ACS Sustain. Chem. Eng., 7, 17030 (2019).

    Article  CAS  Google Scholar 

  8. A. S. Franca, L. S. Oliveira and M. E. Ferreira, Desalination, 249, 267 (2009).

    Article  CAS  Google Scholar 

  9. C. Monente, I. A. Ludwig, A. Irigoyen, M. P. De Pena and C. Cid, J. Agric. Food Chem., 63, 4327 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. A. C. F. Alves, R. V. P. Antero, S. B. de Oliveira, S. A. Ojala and P. S. Scalize, Environ. Sci. Pollut. Res. Int., 26, 24850 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. B. H. An, H. Jeong, J. H. Kim, S. Park, J. H. Jeong, M. J. Kim and M. Chang, J. Agric. Food Chem., 67, 8649 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. H. Moustafa, C. Guizani, C. Dupont, V. Martin, M. Jeguirim and A. Dufresne, ACS Sustain. Chem. Eng., 5, 1906 (2017).

    Article  CAS  Google Scholar 

  13. A. Panusa, A. Zuorro, R. Lavecchia, G. Marrosu and R. Petrucci, J. Agric. Food Chem., 61, 4162 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. M. H. Park, J. Lee and J. Y. Kim, Chemosphere, 234, 179 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. S. K. Prabhakaran, K. Vijayaraghavan and R. Balasubramanian, Ind. Eng. Chem. Res., 48, 2113 (2009).

    Article  CAS  Google Scholar 

  16. T. U. Han, J. Kim and K. Kim, J. Ind. Eng. Chem., 100, 310 (2021).

    Article  CAS  Google Scholar 

  17. T. Tian, S. Freeman, M. Corey, J. B. German and D. Barile, J. Agric. Food Chem., 65, 2784 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. D. R. Vardon, B. R. Moser, W. Zheng, K. Witkin, R. L. Evangelista, T. J. Strathmann, K. Rajagopalan and B. K. Sharma, ACS Sustain. Chem. Eng., 1, 1286 (2013).

    Article  CAS  Google Scholar 

  19. N. Bardiya, Y. W. Hwang and J. H. Bae, Anaerobe, 10, 7 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. N. Zhao, C. Zhao, D. C. W. Tsang, K. Liu, L. Zhu, W. Zhang, J. Zhang, Y. Tang and R. Qiu, J. Hazard. Mater., 404, 124162 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. T. Chen, Z. Zhou, S. Xu, H. Wang and W. Lu, Bioresour. Technol., 190, 388 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. N. Zhao, Z. Yin, F. Liu, M. Zhang, Y. Lv, Z. Hao, G. Pan and J. Zhang, Bioresour. Technol., 260, 294 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Y. Hu, X. Peng, Z. Ai, F. Jia and L. Zhang, Environ. Sci. Technol., 53, 8333 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. J. Li, X. Zhang, M. Liu, B. Pan, W. Zhang, Z. Shi and X. Guan, Environ. Sci. Technol., 52, 2988 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. X. Lv, J. Xu, G. Jiang, J. Tang and X. Xu, J. Colloid Interface Sci., 369, 460 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. C.Y. Cao, J. Qu, W.S. Yan, J.F. Zhu, Z.Y. Wu and W.G. Song, Langmuir, 28, 4573 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Y. Hu, G. Zhan, X. Peng, X. Liu, Z. Ai, F. Jia, S. Cao, F. Quan, W. Shen and L. Zhang, Chem. Eng. J., 389, 124414 (2020).

    Article  CAS  Google Scholar 

  28. J. Xu, Z. Cao, Y. Wang, Y. Zhang, X. Gao, M.B. Ahmed, J. Zhang, Y. Yang, J. L. Zhou and G. V. Lowry, Chem. Eng. J., 359, 713 (2019).

    Article  CAS  Google Scholar 

  29. H. Xu, L. Xie, J. Li and M. Hakkarainen, ACS Appl. Mater. Interf., 9, 27972 (2017).

    Article  CAS  Google Scholar 

  30. S. Zhu, S. H. Ho, X. Huang, D. Wang, F. Yang, L. Wang, C. Wang, X. Cao and F. Ma, ACS Sustain. Chem. Eng., 5, 9673 (2017).

    Article  CAS  Google Scholar 

  31. S. Zhu, X. Huang, X. Yang, P. Peng, Z. Li and C. Jin, Environ. Sci. Technol., 54, 8123 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. H. Zhu, X. Tan, L. Tan, C. Chen, N. S. Alharbi, T. Hayat, M. Fang and X. Wang, ACS Appl. Nano Mater., 1, 2689 (2018).

    Article  CAS  Google Scholar 

  33. E. D. Flynn and J. G. Catalano, Environ. Sci. Technol., 51, 9792 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. X. Huang, X. Hou, F. Song, J. Zhao and L. Zhang, Environ. Sci. Technol., 50, 1964 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. T. Jozwiak, U. Filipkowska, J. Struk-Sokolowska, K. Bryszewski, K. Trzcinski, J. Kuzma and M. Slimkowska, Sci. Rep., 11, 9584 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. G. Sharma, M. Naushad, A. H. Al-Muhtaseb, A. Kumar, M. R. Khan, S. Kalia, Shweta, M. Bala and A. Sharma, Int. J. Biol. Macromol., 95, 484 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. X. Cao, J. Guo, J. Mao and Y. Lan, J. Hazard. Mater., 192, 1533 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Y. Li, B. Xing, X. Wang, K. Wang, L. Zhu and S. Wang, Energ. Fuel, 33, 12459 (2019).

    Article  CAS  Google Scholar 

  39. X. Wang, Y. Qin, L. Zhu and H. Tang, Environ. Sci. Technol., 49, 6855 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. T. Almeelbi and A. Bezbaruah, J. Nanoparticle Res., 14, 197 (2012).

    Article  CAS  Google Scholar 

  41. H. Wang, X. Liang, Y. Liu, T. Li and K. Y. A. Lin, Resour. Conserv. Recycl., 168, 105284 (2021).

    Article  Google Scholar 

  42. X. Lv, Y. Hu, J. Tang, T. Sheng, G. Jiang and X. Xu, Chem. Eng. J., 218, 55 (2013).

    Article  CAS  Google Scholar 

  43. H. Dong and I. M. Lo, Water Res., 47, 419 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. T. Liu, P. Rao, M. S. Mak, P. Wang and I. M. Lo, Water Res., 43, 2540 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Q. Wang, N. Cissoko, M. Zhou and X. Xu, Phys. Chem. Earth, 36, 442 (2011).

    Article  Google Scholar 

  46. P. Agrawal and A. K. Bajpai, J. Disper. Sci. Technol., 32, 1353 (2011).

    Article  CAS  Google Scholar 

  47. F. He, M. Zhang, T. Qian and D. Zhao, J. Colloid Interface Sci., 334, 96 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Y. Fang, X. Wu, M. Dai, A. Lopez-Valdivieso, S. Raza, I. Ali, C. Peng, J. Li and I. Naz, J. Clean. Prod., 312, 127678 (2021).

    Article  CAS  Google Scholar 

  49. J. Zhong, W. Yin, Y. Li, P. Li, J. Wu, G. Jiang, J. Gu and H. Liang, Water Res., 122, 536 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. J. Dries, L. Bastiaens, D. Springael, S. Kuypers, S. N. Agathos and L. Diels, Water Res., 39, 3531 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Z. Yang, C. Shan, W. Zhang, Z. Jiang, X. Guan and B. Pan, Water Res., 106, 461 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Characteristic Innovation Projects Guangdong Provincial Department of Education (Natural Science Category, 2018KTSCX208 and 2021KQNCX084), Guangdong Basic and Applied Basic Research Foundation (2021A1515010185), the Science and Technology Project of Guangdong Province (Shaoguan Science and Technology Bureau [2020] No. 44), the Projects of Science and Technology of Shaoguan City (2018sn057 and 200811094530800), the Shaoguan University Research Project (SZ2020KJ04 and SY2020KJ04), the Student Science and Technology Innovation Cultivating Program of Guangdong Province (pdjh2021b0457), and the Student Innovation and Entrepreneurship Training Program of China (S202010576029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobing Wang.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at u]http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Zhi, M., Chen, S. et al. Efficient removal of Cr(VI) by spent coffee grounds: Molecular adsorption and reduction mechanism. Korean J. Chem. Eng. 39, 1872–1879 (2022). https://doi.org/10.1007/s11814-021-1045-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1045-4

Keywords

Navigation