Skip to main content
Log in

Oxidized gum arabic cross-linked pectin/O-carboxymethyl chitosan: An antibiotic adsorbent hydrogel

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The current work investigated the synthesis possibility of oxidized gum arabic cross-linked pectin/O-carboxymethyl chitosan hydrogels (OGA-Pc-O-CMCS) as a pH-sensitive adsorbent vehicle. During the hydrogel fabrication, the cross-linker oxidized gum arabic (OGA) plays an important role in the enhancement of mechanical stability and the structural compactness of the hydrogel. The effect of OGA content, reaction time, reaction temperature, and reaction pH on the hydrogel swelling and crosslink degree was evaluated, modeled, and optimized statistically using response surface methodology (RSM) based on central composite design (CCD). As the pH of pectin/O-Carboxymethyl chitosan (Pc-O-CMCS) complexation increased up to 6.0, the swelling degree of the hydrogels decreased regardless of the concentration of the OGA. The swelling indices of 101.35% and 70.552% showed the optimum RSM results in the acidic and neutral medium, respectively. The adsorption efficiency of two conventional fluoroquinolones antibiotics (Levofloxacin (LVX) and Delafloxacin (DLX)) in the optimized hydrogel formulations was investigated. The obtained results confirmed that OGA concentration was an important parameter in the swelling processes. The adsorption capacity of the hydrogels was higher in acidic medium (pH 3.9) compared to natural medium (pH 7.1), which indicates the pH-sensitive adsorption behavior of the prepared hydrogel. The maximum antibiotic adsorption occurred after 12 hours: (66.3`-87.5%) and (45`-53%) for pH 3.9 and 7.1, respectively. The shape and morphological analysis of the beads before and after adsorption was performed using field emission scanning electron microscopy (FE-SEM). The FE-SEM analysis revealed that the shape of the beads changed significantly because of erosion and swelling activity after antibiotics adsorption. Experimental results exhibited that SIP model fitted best to the isotherm adsorption of LVX and DLX onto OGA-Pc-O-CMCS hydrogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Vaughn, S. M. Seelye, X. Q. Wang, W. L. Wiitala, M. A. Rubin and H. C. Prescott, Inpatient and discharge fluoroquinolone prescribing in Veterans Affairs hospitals between 2014 and 2017, presented at the Open Forum Infectious Diseases (2020).

  2. M. Bilal, S. Mehmood, T. Rasheed and H. M. Iqbal, Curr. Opin. Environ. Sci. Health, 13, 68 (2020).

    Article  Google Scholar 

  3. E. Felis, J. Kalka, A. Sochacki, K. Kowalska, S. Bajkacz, M. Harnisz and E. Korzeniewska, Eur. J. Pharmacol., 866, 172813 (2020).

    Article  CAS  Google Scholar 

  4. N. Benarab and F. F. Fangninou, Int. J. Sci. Res. Publ. IJSRP, 10 (2020).

  5. K. M. Onesios, T. Y. Jim and E. J. Bouwer, Biodegradation, 20(4), 441 (2009).

    Article  CAS  Google Scholar 

  6. A. Anglada, A. Urtiaga and I. Ortiz, J. Chem. Technol. Biotechnol., 84(12), 1747 (2009).

    Article  CAS  Google Scholar 

  7. D. Kanakaraju, B. D. Glass and M. Oelgemöller, J. Environ. Manage., 219, 189 (2018).

    Article  CAS  Google Scholar 

  8. K. Li, X. Lu, Y. Zhang, K. Liu, Y. Huang and H. Liu, Environ. Res., 185, 109 (2020).

    Google Scholar 

  9. I. Ali, O. M. Alharbi, Z. A. ALOthman, A. M. Al-Mohaimeed and A. Alwarthan, Environ. Res., 170, 389 (2019).

    Article  CAS  Google Scholar 

  10. S. Gu, X. Kang, L. Wang, E. Lichtfouse and C. Wang, Environ. Chem. Lett., 17(2), 629 (2019).

    Article  CAS  Google Scholar 

  11. R. Baby, B. Saifullah and M. Z. Hussein, Nanoscale Res. Lett., 14(1), 1 (2019).

    Article  CAS  Google Scholar 

  12. P. Samaddar, S. Kumar and K.-H. Kim, Polym. Rev., 59(3), 418 (2019).

    Article  CAS  Google Scholar 

  13. S. Iftekhar, D. L. Ramasamy, V. Srivastava, M. B. Asif and M. Sillanpää, Chemosphere, 204, 413 (2018).

    Article  CAS  Google Scholar 

  14. N. S. Capanema, A. A. Mansur, H. S. Mansur, A. C. de Jesus, S. M. Carvalho, P. Chagas and L. C. de Oliveira, Environ. Technol., 39(22), 2856 (2018).

    Article  CAS  Google Scholar 

  15. Z. Bao, C. Xian, Q. Yuan, G. Liu and J. Wu, Adv. Healthc. Mater., 8(17), 190 (2019).

    Article  Google Scholar 

  16. M. Chen, Z. Ni, Y. Shen, G. Xiang and L. Xu, Colloids Surf. A Physicochem. Eng., 602, 125 (2020).

    Article  Google Scholar 

  17. X. Liang, C. Ma, X. Yan, H. Zeng, D. J. McClements, X. Liu and F. Liu, Food Hydrocoll., 102, 105 (2020).

    Article  Google Scholar 

  18. M. Amr, M. Counts, J. Kernan, A. Mallah, J. Mendenhall, B. Van Wie, N. Abu-Lail and B. A. Gozen, Bioprinting, 22, 133 (2021).

    Article  Google Scholar 

  19. M. Perini, D. Bertoldi, T. Nardin, S. Pianezze, G. Ferrari and R. Larcher, Food Hydrocoll., 105, 105 (2020).

    Article  Google Scholar 

  20. A. Sudalai, A. Khenkin and R. Neumann, Org. Biomol. Chem., 13(15), 4374 (2015).

    Article  CAS  Google Scholar 

  21. S. Manjunath and M. Kumar, Chemosphere, 262, 127 (2021).

    Article  Google Scholar 

  22. H. Gong, M. Liu, B. Zhang, D. Cui, C. Gao, B. Ni and J. Chen, Int. J. Biol. Macromol., 49(5), 1083 (2011).

    Article  CAS  Google Scholar 

  23. G.-Q. Huang, L.-Y. Cheng, J.-X. Xiao and X.-N. Han, Colloid Polym. Sci., 293(2), 407 (2015).

    Article  Google Scholar 

  24. A. Z. Tareq, M. S. Hussein and A. M. Mustafa, Int. Res. J. Pure Appl., 12(4), 1 (2016).

    Article  Google Scholar 

  25. K. Gupta and F. H. Jabrail, Carbohydr. Res., 341(6), 744 (2006).

    Article  CAS  Google Scholar 

  26. J. L. Drury and D. J. Mooney, Biomaterials, 24(24), 4337 (2003).

    Article  CAS  Google Scholar 

  27. M. Sarafrazi, M. Hamadanian and A. R. Ghasemi, Mech. Mater., 138, 103 (2019).

    Article  Google Scholar 

  28. B. Sarker, D. G. Papageorgiou, R. Silva, T. Zehnder, F. Gul-E-Noor, M. Bertmer, J. Kaschta, K. Chrissafis, R. Detsch and A. R. Boccaccini, J. Mater. Chem. B, 2(11), 1470 (2014).

    Article  CAS  Google Scholar 

  29. J. Lach, Water, 11(6), 1141 (2019).

    Article  CAS  Google Scholar 

  30. B. E. Reed and M. R. Matsumoto, Sep. Sci. Technol., 28, 2179 (1993).

    Article  CAS  Google Scholar 

  31. A. M. Carvajal-Bernal, F. Gomez-Granados, L. Giraldo and J. C. Moreno-Pirajan, Eur. J. Chem., 8(2), 112 (2017).

    Article  CAS  Google Scholar 

  32. N. Tzabar and H. ter Brake, Adsorption, 22(7), 901 (2016).

    Article  CAS  Google Scholar 

  33. M. I. Mouzam, M. Dehghan, S. Asif, T. Sahuji and P. Chudiwal, Saudi. Pharm. J., 19(2), 85 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The research is done at the Yasouj university and no funds have been used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Darvishi.

Additional information

Conflict of Interest

Conflict of interest the authors declare that they have no conflict of interest.

Supporting Information

Additional information as noted in the text. This information is available via the Internet at u]http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darvishi, R., Moghadas, H. & Moshkriz, A. Oxidized gum arabic cross-linked pectin/O-carboxymethyl chitosan: An antibiotic adsorbent hydrogel. Korean J. Chem. Eng. 39, 1350–1360 (2022). https://doi.org/10.1007/s11814-021-1038-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1038-3

Keywords

Navigation