Skip to main content

Advertisement

Log in

Dynamic behavior of an ellipsoidal bubble contaminated by surfactant near a vertical wall

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Adding a small amount of surfactant to gas-liquid two-phase flow can markedly change bubble behavior, which has crucial application value in nuclear energy, petrochemical, chemical, and environmental engineering. In this paper, the dynamic behavior of a single ellipsoidal bubble (Re∼800) contaminated by surfactant rising near a vertical wall in stagnant liquid is studied using the shadow method. The effects of different concentrations of sodium dodecyl sulfate solution (100 ppm, 400 ppm, 800 ppm) and initial dimensionless distances on bubble dynamics were compared. The dynamic parameters, shape oscillation, force, and energy of the bubble were analyzed. The results show that the critical initial dimensionless distance at which the collision occurs is decreased due to a dimensionless distance change from 3.3 to 0.23, accelerating the transition from zigzag to spiral movement. Transverse movement of the contaminated bubble is restrained. Because of the Marangoni effect caused by the surfactant, the boundary condition changes from zero shear to non-zero shear, resulting in a decrease in velocity and an increase in the drag coefficient. As the surfactant concentration increases, the lift coefficient does not significantly change with concentration variations. The influences of the wall effect on velocity and drag gradually weaken. Comparing free-rising and collision conditions, the aspect ratio of the contaminated bubble is distinct from the regularity of a clean bubble. The surfactant also changes the wall-normal velocity frequency and symmetrical shape frequency and inhibits energy conversion during collision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Eo:

Eötvös number, Eo=gd2eq(ρl−ρg)σ−1 [-]

Mo:

Morton number, Mo=(ρl−ρg)gμl4σ}−3ρ−2 [-]

Re:

Reynolds number, Re=ρlUdeqμ−1 [-]

St:

Strouhal number, \({\rm{St}} = {\rm{f}}{{\rm{d}}_{eq}}/\overline {\rm{U}} \,[ - ]\)

We:

Weber number, We=ρ

A:

surface area [mm2]

A ij :

added mass tensor [-]

C:

surfactant concentration [ppm]

CD :

drag coefficient [-]

CL :

lift coefficient [-]

CM :

added mass coefficient [-]

deq :

equivalent diameter [mm]

dh :

horizontal axis of in a plane of the bubble [mm]

dv :

vertical axis of in a plane of the bubble [mm]

dD :

major axis of the bubble (y-z) [mm]

dM :

major axis of the bubble (x-y) [mm]

D ij :

rotational inertia tensor [-]

e:

minor axis of the bubble [mm]

Ek :

kinetic energy [μJ]

Es :

surface energy [μJ]

Et :

total energy [μJ]

f:

frequency of trajectory [Hz]

f(2, 0):

frequency of shape oscillation (2, 0) [Hz]

f(2, 2):

frequency of shape oscillation (2, 2) [Hz]

g:

gravity acceleration [ms−2]

h:

amplitude [mm]

FB :

buoyancy [N]

FD :

drag force [N]

FL :

liftforce [N]

l :

elevation [mm]

r:

horizontal shift of the periodic trajectory [mm]

req :

equivalent radius [mm]

S:

initial wall distance [-]

S*:

initial dimensionless wall distance, S*=S/req [-]

t:

time interval between two frames of a photograph [s]

u:

wall-normal velocity [ms−1]

U:

instantaneous velocity of bubble [ms−1]

\(\overline {\rm{U}} \) :

mean velocity of bubble [ms−1]

v:

vertical velocity [ms−1]

V:

volume of bubble [mm3]

w:

spanwise velocity [ms−1]

x, y, z:

Cartesian co-ordinates [mm]

ρ :

density [kgm−3]

σ :

surface tension [Nm−1]

μ :

dynamic viscosity [Nsm−2]

λ :

wavelength [mm]

τ :

ellipticity of the bubble [-]

χ :

aspect ratio [-]

θ :

the polar angle of the bubble rising path [rad]

φ :

azimuth angle of the bubble rising path [rad]

Ω :

rotation velocity [rad/s]

Γ :

torque [Nm]

ε :

Levi-Civita symbol [-]

g:

gas phase

i:

corresponding components on the coordinate axis

l :

liquid phase

u, v, w:

corresponding components to the direction of velocity

x, y, z:

corresponding components in x, y, z-direction

0:

free-rising bubble

*:

dimensionless quantity

References

  1. M. K. Tripathi, K. C. Sahu and R. Govindarajan, Nat. Commun., 6, 1 (2015).

    Article  CAS  Google Scholar 

  2. S. Takagi and Y. Matsumoto, Annu. Rev. Fluid Mech., 43, 1 (2011).

    Article  Google Scholar 

  3. Z. Ahmed, D. Izbassarov, J. Lu, G. Tryggvason, M. Muradoglu and O. Tammisola, Int. J. Multiph. Flow, 126, 1 (2020).

    Article  CAS  Google Scholar 

  4. M. Muradoglu and G. Tryggvason, J. Comput. Phys., 274, 1 (2014).

    Article  CAS  Google Scholar 

  5. H. A. Stone, Annu. Rev. Fluid Mech., 26, 1 (1994).

    Article  Google Scholar 

  6. S. Hosokawa, K. Hayashi and A. Tomiyama, Int. J. Multiph. Flow, 97, 1 (2017).

    Article  CAS  Google Scholar 

  7. S. Hosokawa, K. Hayashi and A. Tomiyama, Exp. Therm. Fluid Sci., 96, 1 (2018).

    Article  CAS  Google Scholar 

  8. S. Takagi and Y. Matsumoto, Annu. Rev. Fluid Mech., 43, 1 (2011).

    Article  Google Scholar 

  9. M. Fukuta, S. Takagi and Y. Matsumoto, Phys. Fluids, 20, 4 (2008).

    Article  CAS  Google Scholar 

  10. Y. Tagawa, S. Takagi and Y. Matsumoto, J. Fluid Mech., 738, 1 (2014).

    Article  CAS  Google Scholar 

  11. D. Rodrigue, D. De Kee and C. C. M. Fong, J. Non-Newton Fluid Mech., 66, 1 (1996).

    Article  Google Scholar 

  12. S. Tasoglu, U. Demirci and M. Muradoglu, Phys. Fluids, 20, 4 (2008).

    Article  CAS  Google Scholar 

  13. B. Cuenot, J. Magnaudet and B. Spennato, J. Fluid Mech., 339, 25 (1997).

    Article  CAS  Google Scholar 

  14. Y. Fei and M. Pang, Int. J. Heat Mass Transfer, 121, 1 (2018).

    Article  Google Scholar 

  15. F. Raymond and J. M. Rosant, Chem. Eng. Sci., 55, 5 (2000).

    Article  Google Scholar 

  16. A. Tzounakos, D. G. Karamanev, A. Margaritis and M. A. Bergougnou, Ind. Eng. Chem. Res., 43, 18 (2004).

    Article  CAS  Google Scholar 

  17. S. Aoyama, K. Hayashi, S. Hosokawa and A. Tomiyama, Exp. Therm. Fluid Sci., 96, 1 (2018).

    Article  CAS  Google Scholar 

  18. R. Clift, J. R. Grace and M. E. Weber, Bubbles, drops, and particles, Academic Press, New York (1978).

    Google Scholar 

  19. A. W. G. De Vries, A. Biesheuvel and L. Van Wijngaarden, Int. J. Multiph. Flow, 28, 11 (2002).

    Article  CAS  Google Scholar 

  20. F. Takemura, S. Takagi, J. Magnaudet and Y. Matsumoto, J. Fluid Mech., 461, 1 (2002).

    Article  CAS  Google Scholar 

  21. F. Takemura and J. Magnaudet, J. Fluid Mech., 495, 1 (2003).

    Article  Google Scholar 

  22. K. Sugiyama and F. Takemura, J. Fluid Mech., 662, 1 (2010).

    Article  Google Scholar 

  23. K. Sugioka and T. Tsukada, Int. J. Multiph. Flow, 71, 32 (2015).

    Article  CAS  Google Scholar 

  24. A. Zaruba, D. Lucas, H. M. Prasser and T. Höhne, Chem. Eng. Sci., 62, 6 (2007).

    Article  CAS  Google Scholar 

  25. H. Jeong and H. Park, J. Fluid Mech., 771, 564 (2015).

    Article  CAS  Google Scholar 

  26. Y. Chen, C. Tu, Q. Yang, Y. Wang and F. Bao, Exp. Therm. Fluid Sci., 120, 110235 (2021).

    Article  Google Scholar 

  27. J. Zhang and M.-J. Ni, J. Fluid Mech., 828, 1 (2017).

    Article  Google Scholar 

  28. A. Tomiyama, G. P. Celata, S. Hosokawa and S. Yoshida, Int. J. Multiph. Flow, 28, 9 (2002).

    Article  Google Scholar 

  29. A. Busciglio, G. Vella, G. Micale and L. Rizzuti, Chem. Eng. J., 140, 1 (2008).

    Article  CAS  Google Scholar 

  30. G. P. Celata, F. D’Annibale, P. Di Marco, G. Memoli and A. Tomiyama, Exp. Therm. Fluid Sci., 31, 6 (2007).

    Article  CAS  Google Scholar 

  31. R. Zenit and J. Magnaudet, Int. J. Multiph. Flow, 35, 2 (2009).

    Article  CAS  Google Scholar 

  32. J. Lee and H. Park, Int. J. Multiph. Flow, 91, 1 (2017).

    Article  CAS  Google Scholar 

  33. J. Huang and T. Saito, Chem. Eng. Sci., 170, 105 (2017).

    Article  CAS  Google Scholar 

  34. B. Figueroa-Espinoza, R. Zenit and D. Legendre, J. Fluid Mech., 616, 419 (2008).

    Article  CAS  Google Scholar 

  35. C. Veldhuis, A. Biesheuvel and L. Van Wijngaarden, Phys. Fluids, 20, 4 (2008).

    Article  CAS  Google Scholar 

  36. R. Bel Fdhila and P. C. Duineveld, Phys. Fluids, 8, 2 (1996).

    Article  Google Scholar 

  37. K. Lunde and R. J. Perkins, Appl. Sci. Res., 58, 387 (1998).

    Article  Google Scholar 

  38. J. Magnaudet and I. Eames, Annu. Rev. Fluid Mech., 32, 1 (2000).

    Article  Google Scholar 

  39. G. Mougin and J. Magnaudet, Int. J. Multiph. Flow, 28, 11 (2002).

    Article  Google Scholar 

  40. W. L. Shew, S. Ponect and J. F. Pinton, J. Fluid Mech., 569, 51 (2006).

    Article  CAS  Google Scholar 

  41. H. Kusuno, H. Yamamoto and T. Sanada, Phys. Fluids, 31, 7 (2019).

    Article  CAS  Google Scholar 

  42. M. F. Moctezuma, R. Lima-Ochoterena and R. Zenit, Phys. Fluids, 17, 9 (2005).

    Article  CAS  Google Scholar 

  43. B. Figueroa-Espinoza, R. Zenit and D. Legendre. J. Fluid Mech., 616, 1 (2008).

    Article  CAS  Google Scholar 

  44. J. Feng and I. A. Bolotnov, Int. J. Multiph. Flow, 99, 1 (2018).

    Article  CAS  Google Scholar 

  45. K. Hayashi and A. Tomiyama, Int. J. Multiph. Flow, 99, 1 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (11572357, 11602077) and Natural Science Foundation of Hebei Province, China (A2021202009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenyi Chen or Jiao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, E., Cai, R., Sun, H. et al. Dynamic behavior of an ellipsoidal bubble contaminated by surfactant near a vertical wall. Korean J. Chem. Eng. 39, 1165–1181 (2022). https://doi.org/10.1007/s11814-021-1035-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1035-6

Keywords

Navigation