Skip to main content
Log in

Polymerization mechanism of polyferric aluminum phosphatic sulfate (PFAPS) and its flocculation effect on simulated dye wastewater

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Inorganic polymer flocculants play an important role in water treatment. The copolymerization of Al3+ and Fe3+ in proportion can prepare polyferric aluminum (PFA), which can improve the flocculation performance of polyferric (PFe) on the premise of reducing Al3+ residue. The effects of Al/Fe and OH/Fe on the micromorphology, physicochemical properties and flocculation performance of polyferric aluminum phosphatic sulfate (PFAPS) were studied in this work. The results show that Fe3+ and Al3+ form Fe-monomer and Al-monomer by combining with six oxygen atoms from H2O or anion. And then these monomers form polymers through the bridging of various anions. Although the binding mode is similar, XRD results show that pfaps and PFPS are amorphous. The flocculation performance of PFAPS first increases and then decreases with the increase of Al/Fe and OH/Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Masseroni, G. Ercolani, E. A. Chiaradia and C. Gandolfi, Hydrol. Res., 50(5), 1293 (2019).

    Article  Google Scholar 

  2. J. Yao, G. Wang, B. Xue, G. Xie and Y. Peng, Hydrol. Res., 51(5), 854 (2020).

    Article  Google Scholar 

  3. S. S. Mohtar, T. N. Z. T. M. Busu, A. M. M. Noor, N. Shaari, N. A. Yusoff, M. A. C. Yunus and H. Mat, Clean Technol. Environ., 19(1), 191 (2017).

    Article  CAS  Google Scholar 

  4. Z. Song and N. Ren, J. Environ. Sci., 20(2), 129 (2008).

    Article  CAS  Google Scholar 

  5. Y. Sun, C. Zhu, H. Zheng, W. Sun, Y. Xu, X. Xiao, Z. You and C. Liu, Chem. Eng. Res. Des., 119, 23 (2017).

    Article  CAS  Google Scholar 

  6. H. Rong, B. Gao, R. Li, Y. Wang, Q. Yue and Q. Li, Chem. Eng. J., 243, 169 (2014).

    Article  CAS  Google Scholar 

  7. X. Niu, X. Li, J. Zhao, Y. Ren and Y. Yang, J. Environ. Sci., 23(7), 1122 (2011).

    Article  CAS  Google Scholar 

  8. H. Eslami, A. Esmaeili, M. H. Ehrampoush, A. A. Ebrahimi, M. Taghavi and R. Khosravi, J. Water Process Eng., 36, 101342 (2020).

    Article  Google Scholar 

  9. K. J. Choi, S. G. Kim and S. H. Kim, J. Hazard. Mater., 151(1), 38 (2008).

    Article  CAS  Google Scholar 

  10. Y. H. Shen and B. A. Dempsey, Environ. Int., 24(8), 899 (1998).

    Article  CAS  Google Scholar 

  11. N. Parthasarathy and J. Buffle, Water Res., 19(1), 25 (1985).

    Article  CAS  Google Scholar 

  12. T. Sun, C. H. Sun, G. L. Zhu, X. J. Miao, C. C. Wu, S. B. Lv and W. J. Li, Desalination, 268(1–3), 270 (2011).

    Article  CAS  Google Scholar 

  13. Z. P. Xing and D. Z. Sun, J. Hazard. Mater., 168(2–3), 1264 (2009).

    Article  CAS  Google Scholar 

  14. R. J. Ward, Y. Zhang and R. R. Crichton, J. Inorg. Biochem., 87(1–2), 9 (2001).

    Article  CAS  Google Scholar 

  15. M. Murali, P. Athif, P. Suganthi, A. S. Bukharia, H. E. S. Mohamed, H. Basu and R. K. Singhal, Environ. Toxicol. Phar., 59, 74 (2018).

    Article  CAS  Google Scholar 

  16. T. P. Flaten, Environ. Geochem. Hlth., 12, 152 (1990).

    Article  CAS  Google Scholar 

  17. A. Zouboulis, P. Moussas and F. Vasilakou, J. Hazard. Mater., 155(3), 459 (2008).

    Article  CAS  Google Scholar 

  18. D. Li, Y. Kang, J. Li and X. Wang, Korean J. Chem. Eng., 36(9), 1499 (2019).

    Article  CAS  Google Scholar 

  19. M. Fan, S. Sung, R. C. Brown, T. D. Wheelock and F. C. Laabs, J. Environ. Eng-Asce., 128(6), 483 (2002).

    Article  CAS  Google Scholar 

  20. F. M. Mohamed and K. A. Alfalous, Egypt. J. Aquat. Res., 46(2), 131 (2020).

    Article  Google Scholar 

  21. T. Sun, L. Liu, L. Wan and Y. Zhang, Chem. Eng. J., 163(1–2), 48 (2010).

    Article  CAS  Google Scholar 

  22. C. Sun, Q. Yue, B. Gao, R. Mu, J. Liu, Y. Zhan, Z. Yang and W. Xu, Desalination, 281, 243 (2011).

    Article  CAS  Google Scholar 

  23. T. Sun, C. Sun, G. Zhu, X. Miao, C. Wu, S. Lv and W. Li, Desalination, 268(1–3), 270 (2011).

    Article  CAS  Google Scholar 

  24. M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess and E. Lindal, SoftwareX, 1–2, 19 (2015).

    Article  Google Scholar 

  25. T. Lu and F. Chen, J. Comput. Chem., 33(5), 580 (2012).

    Article  Google Scholar 

  26. J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and D. A. Case, J. Comput. Chem., 25(9), 1157 (2004).

    Article  CAS  Google Scholar 

  27. P. Li, L. F. Song and K. M. Merz, J. Phys. Chem. B, 119(3), 883 (2014).

    Article  Google Scholar 

  28. L. Martínez, R. Andrade, E. G. Birgin and J. M. Martínez, J. Comput. Chem., 30(13), 2157 (2009).

    Article  Google Scholar 

  29. GB/T 14591-2016, Water treatment chemicals-Poly ferric sulfate, Chinese standard (2016).

  30. A. Zouboulis, P. Moussas and F. Vasilakou, J. Hazard. Mater., 155(3), 459 (2008).

    Article  CAS  Google Scholar 

  31. B. Yang, S. Jiang, C. Zhang, G. Zhao, M. Wu, N. Xiao and P. Su, Chemosphere, 283, 131216 (2021).

    Article  CAS  Google Scholar 

  32. N. Yang, H. Xiao, K. Pi, J. Fang, S. Liu, Y. Chen, Y. Shi, H. Zhang, A. R. Gerson and D. Liu, Chemosphere, 269, 129403 (2021).

    Article  CAS  Google Scholar 

  33. P. Ke, Z. Liu and L. Li, Int. J. Min. Met. Mater., 25(10), 1217 (2018).

    Article  CAS  Google Scholar 

  34. J. Sun, Structural features and evolution mechanisms of two new Al30and Al13species, Inner Mongolia: Inner Mongolia University (2019).

    Google Scholar 

  35. R. Li, C. He and Y. He, Chem. Eng. J., 223, 869 (2013).

    Article  CAS  Google Scholar 

  36. Y. Sun, C. Zhu, H. Zheng, W. Sun, Y. Xu, X. Xiao, Z. You and C. Liu, Chem. Eng. Res. Des., 119, 23 (2017).

    Article  CAS  Google Scholar 

  37. W. Chen, B. Li, Q. Li and J. Tian, Constr. Build. Mater., 124, 1019 (2016).

    Article  CAS  Google Scholar 

  38. A. Zouboulis, P. Moussas and F. Vasilakou, J. Hazard Mater., 155(3), 459 (2007).

    Article  Google Scholar 

  39. W. Chen, H. Zheng, H. Teng, Y. Wang, Y. Zhang, C. Zhao and Y. Liao, PLOS ONE, 10(9), e0137116 (2015).

    Article  Google Scholar 

  40. Y. Fang, X. Zhao and X. Zhang, Ind. Saf. Environ. Prot., 33(10), 22 (2007).

    Google Scholar 

  41. DB12/356-2018, Integrated wastewater discharge standard, Chinese standard (2018).

  42. GB/T 21900-2008, Emission standard of pollutants for electroplating, Chinese standard (2008).

Download references

Acknowledgement

This work is funded by The National Key Research and Development Program of China (Project No. 2017YFC0210203-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Kang.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at u]http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2021_1034_MOESM1_ESM.pdf

Polymerization mechanism of polyferric aluminum phosphatic sulfate (PFAPS) and its flocculation effect on simulated dye wastewater

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Kang, Y. Polymerization mechanism of polyferric aluminum phosphatic sulfate (PFAPS) and its flocculation effect on simulated dye wastewater. Korean J. Chem. Eng. 39, 1831–1838 (2022). https://doi.org/10.1007/s11814-021-1034-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1034-7

Keywords

Navigation