Skip to main content
Log in

Catalytic pyrolysis of corn straw for deoxygenation of bio-oil with different types of catalysts

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Corn straw can be converted to bio-oil through pyrolysis. However, the application of bio-oil is severely restricted due to the high content of oxygen. Catalytic pyrolysis is an available way for deoxygenation of bio-oil, and the deoxygenation reactions are strongly dependent on the type of catalyst. Whereas, the correlation between the deoxy-genated products and the catalyst types is still far from clear. In this work, the migration of O in the pyrolysis process was investigated, and eight catalysts were screened for deoxygenation of bio-oil, with a lab-scale fixed-bed reactor. The results showed that with the increase of pyrolysis temperature, the content of O in bio-oil decreased below 400 °C and then became stable and finally increased rapidly after 550 °C, indicating that the range of 400–550 °C was the proper temperature for deoxygenation. Eight catalysts (ZSM-5, SAPO-34, ZnO, MgO, δ-Al2O3, γ-Al2O3, acidified-α-Al2O3 and acidified-γ-Al2O3) were tested, and it was found that a higher alkalinity of catalyst was favorable for decarboxylation of bio-oil with more produced CO2, while a higher acidity was promoted the decrease of alcohols and carbonyls with more generation of H2O and/or CO. MgO was judged as the optimal catalyst for deoxygenation of bio-oil. The quality of bio-oil under the catalysis of MgO was best, with higher H/C and lower O/C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Lee, Y.M. Kim and I.G. Lee, Korean J. Chem. Eng., 33, 3299 (2016).

    Article  CAS  Google Scholar 

  2. X. Chen, Y. Chen, H. Yang, X. Wang, Q. Che, W. Chen and H. Chen, Bioresour. Technol., 273, 153 (2019).

    Article  CAS  Google Scholar 

  3. X. Tian, Y. Wang, Z. Zeng, L. Dai, Y. Peng, L. Jiang, X. Yang, L. Yue, Y. Liu and R. Ruan, Bioresour. Technol., 320, 124415 (2021).

    Article  CAS  Google Scholar 

  4. C. Wang, L. Li, Z. Zeng, X. Xu, X. Ma, R. Chen and C. Su, Bioresour. Technol., 281, 412 (2019).

    Article  CAS  Google Scholar 

  5. A. Eschenbacher, A. Saraeian, P. A. Jensen, B. H. Shanks, C. Li, J. Ø. Duus, T. E. L. Smitshuysen, C. D. Damsgaard, A. B. Hansen, K. I. Kling, U. V. Mentzel, U. B. Henriksen, J. Ahrenfeldt and A. D. Jensen, Chem. Eng. J., 394, 124878 (2020).

    Article  CAS  Google Scholar 

  6. J. L. F. Oliveira, L. M. Batista, N. A. dos Santos, A. M. Araújo, V. J. Fernandes Jr., A. S. Araujo, A. P. Alves and A. D. Gondim, Renew. Energy, 168, 1377 (2021).

    Article  CAS  Google Scholar 

  7. Y. Lin, C. Zhang, M. Zhang and J. Zhang, Energy Fuels, 24(10), 5686 (2010).

    Article  CAS  Google Scholar 

  8. L. Santamaria, M. Artetxe, G. Lopez, M. Cortazar, M. Amutio, J. Bilbao and M. Olazar, Fuel. Process. Technol, 198, 106223 (2020).

    Article  CAS  Google Scholar 

  9. A. N. K. Lup, F. Abnisa, W. M. A. W. Daud and M. K. Aroua, Appl. Catal. A. Gen., 541, 87 (2017).

    Article  Google Scholar 

  10. A. Veses, B. Puértolas, J. M. López, M. S. Callén, B. Solsona and T. García, ACS Sustain. Chem. Eng., 4(3), 1653 (2016).

    Article  CAS  Google Scholar 

  11. S.N. Liu, J.P. Cao, X.Y. Zhao, J.X. Wang, X.Y. Ren, Z.S. Yuan, Z.X. Guo, W.Z. Shen, J. Bai and X.Y. Wei, J. Energy Inst., 92(5), 1567 (2019).

    Article  CAS  Google Scholar 

  12. A. Eschenbacher, P. A. Jensen, U. B. Henriksen, J. Ahrenfeldt, C. Li, J. Ø. Duus, U. V. Mentzel and A. D. Jensen, Energy Fuels, 33(7), 6405 (2019).

    Article  CAS  Google Scholar 

  13. N. Chaihad, A. Anniwaer, S. Karnjanakom, Y. Kasai, S. Kongparakul, C. Samart, P. Reubroycharoen, A. Abudula and G. Guan, J. Anal. Appl. Pyrolysis, 155, 105079 (2021).

    Article  CAS  Google Scholar 

  14. B. Puertolas, T. C. Keller, S. Mitchell and J. Pérez-Ramírez, Appl. Catal. B, 184, 77 (2016).

    Article  CAS  Google Scholar 

  15. H. Wang, W. Tian, F. Zeng, H. Du, J. Zhang and X. Li, Fuel, 282, 118807 (2020).

    Article  CAS  Google Scholar 

  16. Y.M. Kim, H.W. Lee, S.H. Jang, J. Jeong, S. Ryu, S.C. Jung and Y.K. Park, Korean J. Chem. Eng., 37(3), 493 (2020).

    Article  CAS  Google Scholar 

  17. Q. Zhou, A. Zarei, A. De Girolamo, Y. Yan and L. Zhang, J. Anal. Appl. Pyrolysis, 139, 167 (2019).

    Article  CAS  Google Scholar 

  18. Y. Qian, J. Zhang and J. Wang, Bioresour. Technol., 174, 95 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by the National Key R&D Program of China (2019YFC1906700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, Z., Ge, T. et al. Catalytic pyrolysis of corn straw for deoxygenation of bio-oil with different types of catalysts. Korean J. Chem. Eng. 39, 1240–1247 (2022). https://doi.org/10.1007/s11814-021-1018-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1018-7

Keywords

Navigation