Skip to main content

Advertisement

Log in

Enhanced photocatalytic hydrogen evolution under visible light using noble metal-free ZnS NPs/Ni@Trimellitic acid porous microsphere heterojunction

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The construction of late-model non-noble metal catalysts with above average performance and stability is the best choice to implement visible light decomposition of water for hydrogen production and solve the problem of clean energy. Herein, novel ZnS nanoparticles (ZnS NPs) grown in situ on the surface of porous Ni@Trimellitic acid (Ni-TA) microspheres were successfully synthesized. The structure, optical properties, element composition and others of ZnS/Ni-TA composites were systematically analyzed by experimental characterization. The experimental results showed that pure ZnS showed very weak photocatalytic performance. However, the photocatalytic performance was greatly increased with the addition of Ni-TA. The yield of the best sample (3% ZnS/Ni-TA) reached 1,098 µmol/g/h, about 12 times higher than that of ZnS. Among them, Ni-TA not only can be used as the main body of exotic metal nanoparticles, but also the porous channels can prevent the agglomeration of nanoparticles. The enhanced H2 yield is mainly attributed to the resulting tight interface contact and well-matched band position which are conducive to effective carrier separation; moreover, the electrons quickly diverted to the exposed edge of Ni-TA for reducing to produce hydrogen. The combination of inorganic and new organic semiconductors provides an idea for hydrogen production under visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Che, C. Li, P. Zhou, C. Liu, H. Dong and C. Li, Appl. Surf. Sci., 505, 144564 (2020).

    Article  CAS  Google Scholar 

  2. R. Chen, P. Wang, J. Chen, C. Wang and Y. Ao, Appl. Surf. Sci., 473, 11 (2019).

    Article  CAS  Google Scholar 

  3. R. K. Chava, J. Y. Do and M. Kang, Appl. Surf. Sci., 433, 240 (2018).

    Article  CAS  Google Scholar 

  4. P. Jin, L. Wang, X. Ma, R. Lian, J. Huang, H. She, M. Zhang and Q. Wang, Appl. Catal. B: Environ, 284, 119762 (2021).

    Article  CAS  Google Scholar 

  5. A. Kumar, M. Kumar, V. Navakoteswara Rao, M. V. Shankar, S. Bhattacharya and V. Krishnan, J. Mater. Chem. A, 9, 17006 (2021).

    Article  CAS  Google Scholar 

  6. Y. Feng, M. Xu, P.-L. Tremblay and T. Zhang, Int. J. Hydrogen Energy, 46, 21901 (2021).

    Article  CAS  Google Scholar 

  7. M. Jing, Z. Chen, Z. Li, F. Li, M. Chen, M. Zhou, B. He, L. Chen, Z. Hou and X. Chen, ACS Appl. Mater. Interfaces, 10, 704 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. R. Rameshbabu, P. Ravi and M. Sathish, Chem. Eng. J., 360, 1277 (2019).

    Article  CAS  Google Scholar 

  9. V. Navakoteswara Rao, P. Ravi, M. Sathish, N. Lakshmana Reddy, K. Lee, M. Sakar, P. Prathap, M. Mamatha Kumari, K. Raghava Reddy, M. N. Nadagouda, T. M. Aminabhavi and M. V. Shankar, J. Hazard. Mater., 413, 125359 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. S. Kumar, N. L. Reddy, H. S. Kushwaha, A. Kumar, M. V. Shankar, K. Bhattacharyya and V. Krishnan, ChemSusChem, 10, 3588 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. D. Ramírez-Ortega, A. B. Ramos, A. Hernández-Gordillo, R. Zanella and S. E. Rodil, Int. J. Hydrogen Energy, 45, 30496 (2020).

    Article  CAS  Google Scholar 

  12. Y. Hong, J. Zhang, F. Huang, J. Zhang, X. Wang, Z. Wu, Z. Lin and J. Yu, J. Mater. Chem. A, 3, 13913 (2015).

    Article  CAS  Google Scholar 

  13. R. Rameshbabu, P. Ravi, G. Pecchi, E. J. Delgado, R. V. Mangalaraja and M. Sathish, J. Colloid Interface Sci., 590, 82 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. S. Dhingra, T. Chhabra, V. Krishnan and C.M. Nagaraja, ACS Appl. Ener. Mater., 3, 7138 (2020).

    Article  CAS  Google Scholar 

  15. A. Kumar, V. N. Rao, A. Kumar, M. V. Shankar and V. Krishnan, ChemPhotoChem, 4, 427 (2020).

    Article  CAS  Google Scholar 

  16. S. Kumar, A. Kumar, V. Navakoteswara Rao, A. Kumar, M.V. Shankar and V. Krishnan, ACS Appl. Ener. Mater., 2, 5622 (2019).

    Article  CAS  Google Scholar 

  17. Y. Kim, E. Coy, H. Kim, R. Mrówczyñski, P. Torradla D.-W. Jeong, K. S. Choi, J. H. Jang, M. Y. Song, D.-J. Jang, F. Peiro, S. Jurga and H. J. Kim, Appl. Catal. B: Environ., 280, 119423 (2021).

    Article  CAS  Google Scholar 

  18. N. Soltani, E. Saion, W.M.M. Yunus, M. Erfani, M. Navasery, G. Bahmanrokh and K. Rezaee, Appl. Surf. Sci., 290, 440 (2014).

    Article  CAS  Google Scholar 

  19. J. Guo, S. Khan, S.-H. Cho and J. Kim, Appl. Surf. Sci., 473, 425 (2019).

    Article  CAS  Google Scholar 

  20. A. Y. Shan, T. I. M. Ghazi and S. A. Rashid, Appl. Catal. A-Gen, 389, 1 (2010).

    Article  CAS  Google Scholar 

  21. R. Rangsivek and M. R. Jekel, Chemosphere, 71, 18 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. H. Gocmez, Ceram. Int., 32, 521 (2006).

    Article  CAS  Google Scholar 

  23. N. Subha, M. Mahalakshmi, S. Monika and B. Neppolian, Int. J. Hydrogen Energy, 45, 7552 (2020).

    Article  CAS  Google Scholar 

  24. C. Zhang, Y. Zhou, J. Bao, J. Fang, S. Zhao, Y. Zhang, X. Sheng and W. Chen, Chem. Eng. J., 346, 226 (2018).

    Article  CAS  Google Scholar 

  25. A. Kumar, A. Kumar and V. Krishnan, ACS Catalysis, 10, 10253 (2020).

    Article  CAS  Google Scholar 

  26. A. Kumar, V. Navakoteswara Rao, A. Kumar, A. Mushtaq, L. Sharma, A. Halder and V. Krishnan, ACS Appl. Ener. Mater., 3, 12134 (2020).

    Article  CAS  Google Scholar 

  27. A. Kumar and V. Krishnan, Adv. Funct. Mater., 31, 2009807 (2021).

    Article  CAS  Google Scholar 

  28. F. Zou, Y. M. Chen, K. Liu, Z. Yu, W. Liang, S. M. Bhaway, M. Gao and Y. Zhu, ACS Nano, 10, 377 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. J. Wang, Y. Liu, Z. Wang, P. Wang, Z. Zheng, X. Qin, X. Zhang, Y. Dai and B. Huang, Int. J. Hydrogen Energy, 44, 16575 (2019).

    Article  CAS  Google Scholar 

  30. N. Chen, J. Cao, M. Guo, C. Liu, H. Lin and S. Chen, Int. J. Hydrogen Energy, 46, 19363 (2021).

    Article  CAS  Google Scholar 

  31. X. Wang, G. Li, F. M. Hassan, J. Li, X. Fan, R. Batmaz, X. Xiao and Z. Chen, Nano Energy, 15, 746 (2015).

    Article  CAS  Google Scholar 

  32. Q. Zhou, Y. Gong and K. Tao, Electrochim. Acta, 320, 134582 (2019).

    Article  CAS  Google Scholar 

  33. J. Ran, J. Qu, H. Zhang, T. Wen, H. Wang, S. Chen, L. Song, X. Zhang, L. Jing, R. Zheng and S. Z. Qiao, Adv. Energy Mater., 9, 1803402 (2019).

    Article  CAS  Google Scholar 

  34. H. Sun, Y. Lian, C. Yang, L. Xiong, P. Qi, Q. Mu, X. Zhao, J. Guo, Z. Deng and Y. Peng, Energy Environ. Sci., 11, 2363 (2018).

    Article  CAS  Google Scholar 

  35. X. Yan and Z. Jin, Chem. Eng. J., 420, 127682 (2020).

    Article  CAS  Google Scholar 

  36. T. Liu, K. Yang and Z. Jin, Mol. Catal., 510, 111691 (2021).

    Article  CAS  Google Scholar 

  37. B. Shao, Z. Liu, G. Zeng, Z. Wu, Y. Liu, M. Cheng, M. Chen, Y. Liu, W. Zhang and H. Feng, ACS Sustain. Chem. Eng;., 6, 16424 (2018).

    Article  CAS  Google Scholar 

  38. B. Shao, X. Liu, Z. Liu, G. Zeng, W. Zhang, Q. Liang, Y. Liu, Q. He, X. Yuan, D. Wang, S. Luo and S. Gong, Chem. Eng. J., 374, 479 (2019).

    Article  CAS  Google Scholar 

  39. J. Guo, Y. Liang, L. Liu, J. Hu, H. Wang, W. An and W. Cui, Appl. Surf. Sci., 522, 146356 (2020).

    Article  CAS  Google Scholar 

  40. G. Chen, D. Li, F. Li, Y. Fan, H. Zhao, Y. Luo, R. Yu and Q. Meng, Appl. Catal. A: Gen., 443, 138 (2012).

    Article  CAS  Google Scholar 

  41. A. Hassan, R. Liaquat, N. Iqbal, G. Ali, X. Fan, Z. Hu, M. Anwar and A. Ahmad, J. Electroanal. Chem., 889, 115223 (2021).

    Article  CAS  Google Scholar 

  42. L.-L. Chu, Catal. Commun., 128, 105705 (2019).

    Article  CAS  Google Scholar 

  43. Y. P. Xie, Z. B. Yu, G. Liu, X. L. Ma and H.-M. Cheng, Energy Environ. Sci., 7, 1895 (2014).

    Article  CAS  Google Scholar 

  44. X. Yang, H. Xue, J. Xu, X. Huang, J. Zhang, Y.B. Tang, T. W. Ng, H. L. Kwong, X. M. Meng and C. S. Lee, ACS Appl. Mater. Interfaces, 6, 9078 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. S. Khan, M. Je N.N. T. Ton, W. Lei, T. Taniike, S. Yanagida, D. Ogawa, N. Suzuki, C. Terashima, A. Fujishima, H. Choi and K.-i. Katsumata, Appl. Catal. B: Environ., 297, 120473 (2021).

    Article  CAS  Google Scholar 

  46. F. Jiang, B. Pan, D. You, Y. Zhou, X. Wang and W. Su, Catal. Commun., 85, 39 (2016).

    Article  CAS  Google Scholar 

  47. L. Xiao, H. Chen and J. Huang, Mater. Res. Bull., 64, 370 (2015).

    Article  CAS  Google Scholar 

  48. S. Zhu, X. Qian, D. Lan, Z. Yu, X. Wang and W. Su, Appl. Catal. B: Environ., 269, 118806 (2020).

    Article  CAS  Google Scholar 

  49. X. Wang, Z. Cao, Y. Zhang, H. Xu, S. Cao and R. Zhang, Chem. Eng. J., 385, 123782 (2020).

    Article  Google Scholar 

  50. W. Feng, Y. Wang, X. Huang, K. Wang, F. Gao, Y. Zhao, B. Wang, L. Zhang and P. Liu, Appl. Catal. B: Environ., 220, 324 (2018).

    Article  CAS  Google Scholar 

  51. X. Yang, H. Liu, T. Li, B. Huang, W. Hu, Z. Jiang, J. Chen and Q. Niu, Int. J. Hydrogen Energy, 45, 26967 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Major Projects of Natural Science Research in Anhui Colleges and Universities (KJ2018ZD050, GXXT-2019-017, GXXT-2020-009), Natural Science Foundation of Anhui province (1808085ME129), Key research and development plan of Anhui Province (202004a05020060), Outstanding Young Talents Support Program in Colleges and Universities (gxyqZD2018056).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng-Jun Zhang or Dong-Cai Li.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2021_1011_MOESM1_ESM.pdf

Enhanced photocatalytic hydrogen evolution under visible light using noble metal-free ZnS NPs/Ni@Trimellitic acid porous microsphere heterojunction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, WQ., Zhang, FJ., Wang, YR. et al. Enhanced photocatalytic hydrogen evolution under visible light using noble metal-free ZnS NPs/Ni@Trimellitic acid porous microsphere heterojunction. Korean J. Chem. Eng. 39, 1268–1276 (2022). https://doi.org/10.1007/s11814-021-1011-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1011-1

Keywords

Navigation