Skip to main content
Log in

Effect of baffle configuration on performance of batch stirred vessel

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Crystallization is often carried out in batch stirred vessels. However, it is difficult to obtain uniform crystal size distribution (CSD), as it strongly depends on prevailing flow field operating conditions. This is adversely affected by the geometry of stirred vessels. Hence in this work, CFD simulations were performed to investigate flow field, mixing and crystallization phenomena in a stirred vessel. The performance of the stirred vessel was compared with draft tube baffled stirred vessel. The flow field was quantified through liquid circulation and vorticity. The mixing was analyzed through macromixing time in the stirred vessel. The solubility data, nucleation, and growth kinetics were integrated with CFD through a user-defined function (UDF) to predict crystallization phenomena. The predicted results were validated with experimental data available in the literature. The effects of seed mass, size and temperature on CSD were investigated and optimum conditions [750 gm (seed mass); 500 µm (seed size); 308 K (temperature)] for favourable crystal growth were identified. The performance of the proposed baffled stirred vessel was found to be significant, and it supports enhancing flow field, mixing and crystallization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

average concentration [kmol/L]

c*(θ):

equilibrium concentration of solute

COV:

coefficient of variation

d43 :

De Brouckere mean diameter [µm]

d 10 :

Number Mean diameter [µm]

k:

turbulence kinetic energy [m2/s2]

m0 :

zeroth moment [#/m3/m3]

N:

speed of the impeller [s−1]

t:

time [s]

Ls:

seed size [m]

G:

growth rate [m/s]

B:

nucleation rate [#/m3·s]

R:

universal gas constant [J/mol·K]

S:

relative supersaturation

T:

temperature [K]

U:

velocity [m/s]

ρ :

density of the fluid [kg/m3]

ρ c :

density of the crystal [kg/m3]

Γ :

liquid circulation [m2/s]

μ :

viscosity of the fluid [Pa·s]

μ s i :

moments

σ :

standard deviation

ν :

kinematic viscosity of the fluid [m2/s]

θ :

temperature [°C]

References

  1. Q. Su, Z. K Nagy and C. D. Rielly, Chem. Eng. Process. Process Intensif., 89, 41 (2015).

    Article  CAS  Google Scholar 

  2. Z. Gao, S. Rohani, J. Gong and J. Wang, Engineering, 3, 343 (2017).

    Article  Google Scholar 

  3. H. Ali and J. Solsvik, Phys. Fluids, 33, 033319 (2021).

    Article  CAS  Google Scholar 

  4. V. X. Mendoza-Escamilla, A. Alonzo-García, H. R. Mollinedo, I. González-Neria, J. Antonio Yáñez-Varela and S. A. Martinez-Delgadillo, Chin. J. Chem. Eng., 26, 942 (2018).

    Article  CAS  Google Scholar 

  5. K. Steiros, P. J. K. Bruce, O. R. H. Buxton and J. C. Vassilicos, Springer Proc. in Phys., 363 (2016).

  6. E. L. Paul, M. Midler and Y. Sun, Handb. Ind. Mix., 1027 (2004).

  7. S. Başbuğ, G. Papadakis and J. C. Vassilicos, Phys. Rev. Fluids, 3, 084502 (2018).

    Article  Google Scholar 

  8. H. S. Yoon, S. Balachandar and M. Y. Ha, Phys. Fluids, 21, 085102 (2009).

    Article  Google Scholar 

  9. K. Steiros, P. J. K. Bruce, O. R. H. Buxton and J. C. Vassilicos, Phys. Rev. Fluids, 2, 094802 (2017).

    Article  Google Scholar 

  10. J. F. Wendt, J. D. Anderson, J. Degroote, G. Degrez, E. Dick, R. Grundmann and J. Vierendeels, Computational fluid dynamics: An introduction, Springer Sci, & Business Media (2008).

  11. X. Li, H. Zhao, Z. Zhang, Y. Liu and T. Zhang, Chin. J. Chem. Eng., 29, 57 (2021).

    Article  CAS  Google Scholar 

  12. A. K. Pukkella, R. Vysyaraju, V. Tammishetti, B. Rai and S. Subramanian, Chem. Eng. J., 358, 621 (2019).

    Article  CAS  Google Scholar 

  13. L. Wang, Y. Tian, Y. Qi, Y. Gao and M. Wang, Particuology, 56, 91 (2021).

    Article  CAS  Google Scholar 

  14. J. B. Joshi, N. K. Nere, C. V. Rane, B. N. Murthy, C. S. Mathpati, A. W. Patwardhan and V. V. Ranade, Can. J. Chem. Eng., 89, 754 (2011).

    Article  CAS  Google Scholar 

  15. S. Vedantam and V. V. Ranade, Sadhana — Acad. Proc. Eng. Sci., 38, 1287 (2013).

    CAS  Google Scholar 

  16. S. Hara, S. Ebihara and Y. Kawaguchi, Phys. Fluids, 32, 075102 (2020).

    Article  CAS  Google Scholar 

  17. S. Sulttan and S. Rohani, J. Cryst. Growth, 505, 19 (2019).

    Article  CAS  Google Scholar 

  18. B. Szilágyi and Z. K. Nagy, Cryst. Growth Des., 18, 1415 (2018).

    Article  Google Scholar 

  19. L. M. de Souza, E. Temmel, G. Janiga, A. Seidel-Morgenstern and D. Thévenin, Chem. Eng. Sci., 232, 116344 (2021).

    Article  CAS  Google Scholar 

  20. S. Rohani, S. Horne and K. Murthy, Org. Process Res. Dev., 9, 858 (2005).

    Article  CAS  Google Scholar 

  21. E. Temmel, M. Eicke, H. Lorenz and A. Seidel-Morgenstern, Cryst. Growth Des., 16, 6756 (2016).

    Article  CAS  Google Scholar 

  22. D. Green, Handb. Ind. Cryst., 181–199 (2002).

  23. N. Doki, N. Kubota, A. Sato, M. Yokota, O. Hamada and F. Masumi, AIChE J., 45, 2527 (1999).

    Article  CAS  Google Scholar 

  24. M. Lenka and D. Sarkar, J. Cryst. Growth, 486, 130 (2018).

    Article  CAS  Google Scholar 

  25. N. Doki, N. Kubota, M. Yokota and A. Chianese, J. Chem. Eng. Japan, 35, 670 (2002).

    Article  CAS  Google Scholar 

  26. M. Bohlin and Å. C. Rasmuson, Can. J. Chem. Eng., 70, 120 (1992).

    Article  CAS  Google Scholar 

  27. N. Doki, N. Kubota, A. Sato and M. Yokota, Chem. Eng. J., 81, 313 (2001).

    Article  CAS  Google Scholar 

  28. H. Wei, W. Zhou and J. Garside, Ind. Eng. Chem. Res., 40, 5255 (2001).

    Article  CAS  Google Scholar 

  29. Z. Wang, Z. Mao, C. Yang and X. Shen, Chin. J. Chem. Eng., 14, 713 (2006).

    Article  CAS  Google Scholar 

  30. M. Trampuž, D. Teslić and B. Likozar, Chem. Eng. Res. Des., 165, 254 (2021).

    Article  Google Scholar 

  31. D. A. Green, Handb. Ind. Cryst., 290–312 (2019).

  32. T. Kumaresan and J. B. Joshi, Chem. Eng. J., 115, 173 (2006).

    Article  CAS  Google Scholar 

  33. B. Ashraf Ali, G. Janiga, E. Temmel, A. Seidel-Morgenstern and D. Thévenin, J. Cryst. Growth, 372, 219 (2013).

    Article  CAS  Google Scholar 

  34. E. Temmel, H. Eisenschmidt, H. Lorenz, K. Sundmacher and A. Seidel-Morgenstern, Cryst. Growth Des., 16, 6743 (2016).

    Article  CAS  Google Scholar 

  35. A. Lewis, M. Seckler, H. Kramer and G. Van Rosmalen, Industrial Crystallization: Fundamentals and Applications (Cambridge University Press, 2015).

  36. D. Domínguez-Vázquez, G. B. Jacobs and D. M. Tartakovsky, Phys. Fluids, 33, 033326 (2021).

    Article  Google Scholar 

  37. C. Galletti, A. Paglianti, K. C. Lee and M. Yianneskis, AIChE J., 50, 2050 (2004).

    Article  CAS  Google Scholar 

  38. J. Ding and D. Gidaspow, AIChE J., 36, 523 (1990).

    Article  CAS  Google Scholar 

  39. A. Mersmann, Crystallization technology handbook, CRC press, Florida (2001).

    Book  Google Scholar 

  40. R. McGraw, Aerosol Sci. Technol., 27, 255 (1997).

    Article  CAS  Google Scholar 

  41. K. Hemalatha and K. Y. Rani, Ind. Eng. Chem. Res., 56, 6012 (2017).

    Article  CAS  Google Scholar 

  42. V. John, I. Angelov, A. A. Öncül and D. Thévenin, Chem. Eng. Sci., 62, 2890 (2007).

    Article  CAS  Google Scholar 

  43. R. W. Fox, P. J. Pritchard and A. T. Mcdonald, Introduction to fluid mechanics, 7Th Ed., Wiley India Pvt. Limited (2009).

  44. E. M. Marshall and A. Bakker, Handb. Ind. Mix., 257–353 (2001).

  45. B. Ashraf Ali, M. Börner, M. Peglow, G. Janiga, A. Seidel-Morgenstern and D. Thévenin, Cryst. Growth Des., 15, 145 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basheer Ashraf Ali.

Additional information

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, B.A., Falleiro, L.H. Effect of baffle configuration on performance of batch stirred vessel. Korean J. Chem. Eng. 39, 1146–1157 (2022). https://doi.org/10.1007/s11814-021-1008-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1008-9

Keywords

Navigation