Skip to main content
Log in

Hydrothermal synthesis and characterization of quartz nanocrystals — Implications from a simple kinetic growth model

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Obtaining quartz nanocrystals (NCs) of high purity and uniform sizes remains a challenging problem. In this report, the synthesis and characterization of quartz NCs under hydrothermal conditions was investigated and the corresponding mathematical models were introduced to elucidate the growth kinetics of quartz NCs. Amorphous silica nanoparticles were dissolved in aqueous solutions followed by mild hydrothermal reactions, resulting in NCs with relatively uniform sizes and shapes. The NCs were made from highly crystalline α-quartz. Their hydrothermal growth process over an induction period of ∼3 hr initially yielded amorphous silica nanoparticles that were aggregated into clusters. The crystallinity of α-quartz emerged from the products of the nanoparticle clusters after the induction period, which likely involved an amorphous to crystalline transition. The NCs continued to grow with increasing time. The growth kinetics exhibited a dependence on the square root of time, which has not been observed for other quartz nanocrystalline systems. The analysis suggests that the process is reaction-limited, not diffusion-limited, likely governed by the dissolved silicate monomer flux to the surface of the growing NCs followed by first-order rate-limiting attachment kinetics. This study highlights the growth kinetics of quartz NCs by unveiling the complex nature of multi-step growth processes, offering an improved hydrothermal method for fine-tuning the size and morphology of quartz NCs, which have potential optoelectronics, sensing, and rechargeable battery, and novel biorefinery process applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Deng, J. Yin, J. Ma, J. Zhou, L. Zhang, L. Gao and T. Jiao, Appl. Surf. Sci., 543, 148821 (2021).

    Article  CAS  Google Scholar 

  2. R. Geng, R. Chang, Q. Zou, G. Shen, T. Jiao and X. Yan, Small, 17, 2008114 (2021).

    Article  CAS  Google Scholar 

  3. C. Qian, J. Yin, J. Zhao, X. Li, S. Wang, Z. Bai and T. Jiao, Colloids Surf. A Physicochem. Eng. Asp., 610, 125752 (2021).

    Article  CAS  Google Scholar 

  4. Y. Xu, R. Wang J. Wang, J. Li, T. Jiao and Z. Liu, Chem. Eng. J., 417, 129233 (2021).

    Article  CAS  Google Scholar 

  5. E. D. E. R. Hyde, A. Seyfaee, F. Neville and R. Moreno-Atanasio, Ind. Eng. Chem. Res., 55, 8891 (2016).

    Article  CAS  Google Scholar 

  6. E. H. Jang, S. P. Pack, I. Kim and S. Chung, Sci. Rep., 10, 5558 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. G. Qiao, L. Liu, X. Hao, J. Zheng, W. Liu, J. Gao, C. C. Zhang and Q. Wang, Chem. Eng. J., 382, 122907 (2020).

    Article  CAS  Google Scholar 

  8. Z. Zhou, Y. Zheng, J. Gao, L. Jiang and Q. Wang, J. Sol-Gel Sci. Technol., 77, 205 (2016).

    Article  CAS  Google Scholar 

  9. M. Pagliaro, Silica-based materials for advanced chemical applications, Royal Society of Chemistry (2009).

  10. B. Mason and L. G. Berry, Elements of mineralogy, W. H. Freeman, San Francisco (1968).

    Google Scholar 

  11. K. I. Vatalis, G. Charalambides and N. P. Benetis, Procedia Econ. Financ., 24, 734 (2015).

    Article  Google Scholar 

  12. A. Ballato, in Piezoelectricity: Evolution and future of a technology, W. Heywang, K. Lubitz and W. Wersing, Eds., Springer Berlin Heidelberg, Berlin, Heidelberg (2008).

    Google Scholar 

  13. Y. Saigusa, in Advanced piezoelectric materials (second edition), K. Uchino, Ed., Woodhead Publishing (2017).

  14. C. H. Yoder, in Ionic compounds: Applications of chemistry to mineralogy, Wiley (2006).

  15. D. R. Spearing, I. Farnan and J. F. Stebbins, Phys. Chem. Miner., 19, 307 (1992).

    Article  CAS  Google Scholar 

  16. P. Bettermann and F. Liebau, Contrib. Mineral Petrol., 53, 25 (1975).

    Article  CAS  Google Scholar 

  17. W. S. Fyfe and D. S. McKay, Am. Mineral., 47, 83 (1962).

    CAS  Google Scholar 

  18. Y.-H. Jung, S. P. Pack and S. Chung, Mater. Res. Bull., 101, 67 (2018).

    Article  CAS  Google Scholar 

  19. J. Liu, L. Wang, J. Wang and L. T. Zhang, Mater. Res. Bull., 48, 416 (2013).

    Article  CAS  Google Scholar 

  20. X. Wang, J. Zhuang, Q. Peng and Y. D. Li, Nature, 437, 121 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. M. Yoshimura and K. Byrappa, J. Mater. Sci., 43, 2085 (2008).

    Article  CAS  Google Scholar 

  22. K. Byrappa, N. Keerthiraj and S. M. Byrappa, in Handbook of crystal growth, P. Rudolph, Ed., Elsevier, Boston (2015).

    Google Scholar 

  23. O. Cambon and J. Haines, Crystals, 7, 38 (2017).

    Article  Google Scholar 

  24. P. R. Hervey and J. W. Foise, Min. Metall. Explor., 18, 1 (2001).

    CAS  Google Scholar 

  25. G. Johnson and J. Foise, in Encyclopedia of applied physics, G. L. Trigg, Ed., VCH Publishers (1996).

  26. J. F. Bertone, J. Cizeron, R. K. Wahi, J. K. Bosworth and V. L. Colvin, Nano Lett., 3, 655 (2003).

    Article  CAS  Google Scholar 

  27. P. Buckley, N. Hargreaves and S. Cooper, Commun. Chem., 1, 49 (2018).

    Article  Google Scholar 

  28. X. M. Jiang, Y. B. Jiang and C. J. Brinker, Chem. Commun., 47, 7524 (2011).

    Article  CAS  Google Scholar 

  29. G. Moon and S. Chung, Appl. Chem. Eng., 31, 697 (2020).

    Google Scholar 

  30. G. Moon, N. Lee, S. Kang, J. Park, Y.-E. Kim, S.-A. Lee, R. K. Chitumalla, J. Jang, Y. Choe, Y.-K. Oh and S. Chung, Chem. Eng. J., 413, 127467 (2021).

    Article  CAS  Google Scholar 

  31. M. P. Finnegan, H. Zhang and J. F. Banfield, Chem. Mater., 20, 3443 (2008).

    Article  CAS  Google Scholar 

  32. R. Laudise, J. Am. Chem. Soc., 81, 562 (1959).

    Article  CAS  Google Scholar 

  33. K. Michibayashi and H. Imoto, Phys. Chem. Miner., 39, 213 (2012).

    Article  CAS  Google Scholar 

  34. T. Moxon and M. Carpenter, Mineral. Mag., 73, 551 (2009).

    Article  CAS  Google Scholar 

  35. W. J. de Ruijter, R. Sharma, M. R. McCartney and D. J. Smith, Ultramicroscopy, 57, 409 (1995).

    Article  CAS  Google Scholar 

  36. J. O. Malm and M. A. O’Keefe, Ultramicroscopy, 68, 13 (1997).

    Article  CAS  Google Scholar 

  37. P. D. Ihinger and S. I. Zink, Nature, 404, 865 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. G. S. Smith and L. E. Alexander, Acta Crystallogr., 16, 462 (1963).

    Article  CAS  Google Scholar 

  39. P.-H. Wei, Z Kristallogr, 92, 355 (1935).

    Article  CAS  Google Scholar 

  40. M. Takeuchi, G. Martra, S. Coluccia and M. Anpo, J. Near Infrared Specrosc., 17, 373 (2009).

    Article  CAS  Google Scholar 

  41. T. L. Barr, Appl. Surf. Sci., 15, 1 (1983).

    Article  CAS  Google Scholar 

  42. P. Post, L. Wurlitzer, W. Maus-Friedrichs and A. P. Weber, Nanomater., 8, 530 (2018).

    Article  Google Scholar 

  43. C. F. Holder and R. E. Schaak, ACS Nano, 13, 7359 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. P. B. Balbuena and K. E. Gubbins, Langmuir, 9, 1801 (1993).

    Article  CAS  Google Scholar 

  45. K. S. W. Sing, Pure Appl. Chem., 57, 603 (1985).

    Article  CAS  Google Scholar 

  46. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K. S. W. Sing, Pure Appl. Chem., 87, 1051 (2015).

    Article  CAS  Google Scholar 

  47. C. R. Bullen and P. Mulvaney, Nano Lett., 4, 2303 (2004).

    Article  CAS  Google Scholar 

  48. V. LaMer, Ind. Eng. Chem., 44, 1270 (1952).

    Article  CAS  Google Scholar 

  49. V. K. LaMer and R. H. Dinegar, J. Am. Chem. Soc., 72, 4847 (1950).

    Article  CAS  Google Scholar 

  50. D.-K. Lee, S.-I. Park, J. K. Lee and N.-M. Hwang, Acta Mater., 55, 5281 (2007).

    Article  CAS  Google Scholar 

  51. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids, 19, 35 (1961).

    Article  Google Scholar 

  52. X. Lin, C. Sorensen and K. Klabunde, J. Nanopart. Res., 2, 157 (2000).

    Article  CAS  Google Scholar 

  53. X. Peng, J. Wickham and A. Alivisatos, J. Am. Chem. Soc., 120, 5343 (1998).

    Article  CAS  Google Scholar 

  54. H. Reiss, J. Chem. Phys., 19, 482 (1951).

    Article  CAS  Google Scholar 

  55. D. T. Robb and V. Privman, Langmuir, 24, 26 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. A. E. Saunders, M. B. Sigman and B. A. Korgel, J. Phys. Chem. B, 108, 193 (2004).

    Article  CAS  Google Scholar 

  57. T. Sugimoto, Adv. Colloid Interface Sci., 28, 65 (1987).

    Article  CAS  Google Scholar 

  58. D. V. Talapin, A. L. Rogach, M. Haase and H. Weller, J. Phys. Chem. B, 105, 12278 (2001).

    Article  CAS  Google Scholar 

  59. C. Wagner, Z. Elektrochem., 65, 581 (1961).

    CAS  Google Scholar 

  60. J. Y. Rempel, M. G. Bawendi and K. F. Jensen, J. Am. Chem. Soc., 131, 4479 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. F. Wang, V. N. Richards, S. P. Shields and W. E. Buhro, Chem. Mater., 26, 5 (2014).

    Article  Google Scholar 

  62. R. Viswanatha and D. D. Sarma, in Nanomaterials chemistry: Recent developments and new directions, C. N. R. Rao, h.c. mult. A Müller, A. K. Cheetham Eds., Wiley-VCH Verlag GmbH & Co. KgaA (2007).

  63. W. Ostwald, Phys. Chem., 37, 385 (1901).

    Google Scholar 

  64. M. Perez, Scr. Mater., 52, 709 (2005).

    Article  CAS  Google Scholar 

  65. H. Tyrrell, J. Chem. Educ., 41, 397 (1964).

    Article  CAS  Google Scholar 

  66. R. A. Laudise, Chem. Eng. News, 65, 30 (1987).

    Article  CAS  Google Scholar 

  67. L. Rebreanu, J.-P. Vanderborght and L. Chou, Mar. Chem., 112, 230 (2008).

    Article  CAS  Google Scholar 

  68. Y. Chen, E. Johnson and X. Peng, J. Am. Chem. Soc., 129, 10937 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. M. Drofenik, M. Kristl, A. Žnidaršič, D. Hanžel and D. Lisjak, J. Am. Ceram. Soc., 90, 2057 (2007).

    Article  CAS  Google Scholar 

  70. N. R. Jana and X. Peng, J. Am. Chem. Soc., 125, 14280 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. X. Ji, X. Song, J. Li, Y. Bai, W. Yang and X. Peng, J. Am. Chem. Soc., 129, 13939 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. L. Meli and P. F. Green, ACS Nano, 2, 1305 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. M. P. Morales, T. González-Carreño and C. J. Serna, J. Mater. Res., 7, 2538 (1992).

    Article  CAS  Google Scholar 

  74. C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc., 115, 8706 (1993).

    Article  CAS  Google Scholar 

  75. J. S. Owen, E. M. Chan, H. Liu and A. P. Alivisatos, J. Am. Chem. Soc., 132, 18206 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. L. Qu, W. W. Yu and X. Peng, Nano Lett, 4, 465 (2004).

    Article  CAS  Google Scholar 

  77. S. Stoeva, K. J. Klabunde, C. M. Sorensen and I. Dragieva, J. Am. Chem. Soc., 124, 2305 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. J. Thessing, J. Qian, H. Chen, N. Pradhan and X. Peng, J. Am. Chem. Soc., 129, 2736 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. N. Zheng, J. Fan and G. D. Stucky, J. Am. Chem. Soc., 128, 6550 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. R. Seshadri, G. N. Subbanna, V. Vijayakrishnan, G. U. Kulkarni, G. Ananthakrishna and C. N. R. Rao, J. Phys. Chem., 99, 5639 (1995).

    Article  CAS  Google Scholar 

  81. S. L. Westcott, S. J. Oldenburg, T. R. Lee and N. J. Halas, Langmuir, 14, 5396 (1998).

    Article  CAS  Google Scholar 

  82. J. Y. Xiao and L. M. Qi, Nanoscale, 3, 1383 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. L. Lin, M. Chen, H. Qin and X. Peng, J. Am. Chem. Soc., 140, 17734 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. R. Shankar, B. B. Wu and T. P. Bigioni, J. Phys. Chem. C, 114, 15916 (2010).

    Article  CAS  Google Scholar 

  85. A. Ruditskiy, M. Zhao, K. D. Gilroy, M. Vara and Y. Xia, Chem. Mater., 28, 8800 (2016).

    Article  CAS  Google Scholar 

  86. E. M. Wong, J. E. Bonevich and P. C. Searson, J. Phys. Chem. B, 102, 7770 (1998).

    Article  CAS  Google Scholar 

  87. R. Viswanatha, S. Sapra, B. Satpati, P. V. Satyam, B. N. Dev and D. D. Sarma, J. Mater. Chem., 14, 661 (2004).

    Article  CAS  Google Scholar 

  88. S. Cheong, J. Watt, B. Ingham, M. F. Toney and R. D. Tilley, J. Am. Chem. Soc., 131, 14590 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. R. Viswanatha, H. Amenitsch and D. D. Sarma, J. Am. Chem. Soc., 129, 4470 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. L. Y. Yao, Y. X. Zhu, C. Q. Liu, R. H. Jiao, Y. H. Lu and R. X. Tan, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 989, 122 (2015).

    Article  CAS  Google Scholar 

  91. T. J. Woehl, Chem. Mater., 32, 7569 (2020).

    Article  CAS  Google Scholar 

  92. J. Zhang, F. Huang and Z. Lin, Nanoscale, 2, 18 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Financial Supporting Project of Long-term Overseas Dispatch of PNU’s Tenure-track Faculty, 2020; Brain Korea 21 FOUR Program.

Author information

Authors and Affiliations

Authors

Contributions

G.M. and S.C. designed research. G.M. and performed all experiments. S.C., G.M. and E.-H.J. analyzed data. S.C., G.M. and E.-H.J. prepared all figures. G.M., E.-H.J., S.K., Y.C., and S.C. wrote the paper.

Corresponding author

Correspondence to Sungwook Chung.

Additional information

Declaration of Conflict of Interest

The authors declare that there is no conflict of interest for the manuscript. The authors also declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in the manuscript.

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, G., Jang, EH., Kim, S. et al. Hydrothermal synthesis and characterization of quartz nanocrystals — Implications from a simple kinetic growth model. Korean J. Chem. Eng. 39, 440–450 (2022). https://doi.org/10.1007/s11814-021-0996-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0996-9

Keywords

Navigation