Skip to main content
Log in

A comparative study on the performance of highly conductive sulfonated poly(ether ether ketone) PEM modified by halloysite nanotubes, sulfonated polystyrene and phosphotungstic acid

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Proton transfer is the most important task of proton exchange membranes (PEMs) for application in fuel cells. One vital disadvantage of currently used commercial Nafion membranes is the low proton conductivity at high temperatures. Therefore, the objective of this research was to increase the proton conductivity of PEMs based on sulfonated poly (ether ether ketone) (SPEEK). Herein, modification of SPEEK-based PEM was carried out using polydopamine-coated halloysite nanotubes (HNT) alone and in combination with sulfonated polystyrene (SPS) and phosphotungstic acid (PWA). In this method, poly (ether ether ketone) sulfonation process was performed under optimum operating conditions to create more sulfonic acid groups on its chains. Here, polydopamine was doped on the outer surface of HNT (DHNT) and employed as the additive to create additional proton transferring pathways in the membrane. The hydrophilicity of the modified nanotube was enhanced through silanization (named as DHNTS). Moreover, SPS and PWA were applied to improve the ability of protons to transfer through the proton barrier channels in the membrane. Performing the sulfonation of polystyrene in the solution phase was a novel approach in this study, which led to significant increase in the degree of sulfonation. The results showed that the SPEEK/DHNTS∣SPS and SPEEK/DHNTS∣PWA membranes in the presence of 15% weight ratio additives and 100% relative humidity exhibited 109% and 90% higher proton conductivity than the neat SPEEK membrane, respectively. Furthermore, 20% and 10% higher proton conductivity was observed for the aforementioned membranes compared to the commercial Nafion117 membrane. Because of the strong acid-base bonding between DHNTS and SPEEK and the sticky nature of polydopamine, the chemical stability of the modified PEMs was higher than the neat membrane. In terms of fuel cell performance, there was little difference between Nafion117 membrane and DHNTS-modified PEM. These modified membranes are therefore suitable alternatives to address the commercial Nafion membrane’s gap in the fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PEEK:

poly(ether ether ketone)

SPEEK:

sulfonated poly(ether ether ketone)

SPS:

sulfonated polystyrene

PWA:

phosphotungstic acid

HNT:

halloysite nanotubes

DHNTS:

polydopamine-coated HNT modified by silane

MFC:

microbial fuel cell

PEM:

proton exchange membrane

NMP:

N-methyl-2-pyrrolidine

THF:

tetrahydrofuran

IEC:

ion exchange capacity [mmol g−1]

DS:

degree of sulfonation [%]

σ :

proton conductivity of the membrane [S/m]

L:

thickness of membrane [m]

R:

membrane resistance [Ω]

A:

effective area of the membrane [m2]

W:

mass of the polymer/membrane [gr]

MNaOH :

molarity of NaOH titrant [M]

VNaOH :

volume of NaOH titrant [ml]

Mp :

molecular weight [g mol−1]

References

  1. H. Lade, V. Kumar, G. Arthanareeswaran and I.A. Fauzi, Int. J. Hydrogen Energy, 42, 1063 (2017).

    Article  CAS  Google Scholar 

  2. B. Millington, S. Du and B. G. Pollet, J. Power Sources, 196, 9013 (2011).

    Article  CAS  Google Scholar 

  3. W. Shi and L. A. Baker, RSC Adv., 5, 99284 (2015).

    Article  CAS  Google Scholar 

  4. S. Bano, Y. S. Negi and K. Ramya, Int. J. Hydrogen Energy, 44, 28968 (2019).

    Article  CAS  Google Scholar 

  5. M. J. Parnian, F. Gashoul and S. Rowshanzamir, Iranian J. Hydrog. & Fuel Cell, 3, 221 (2017).

    Google Scholar 

  6. D. Rana, B. M. Mandal and S. N. Bhattacharyya, Polymer, 37(12), 2439 (1996).

    Article  CAS  Google Scholar 

  7. D. Rana, K. Bag, S. N. Bhattacharyya and B. M. Mandal, J. Polym. Sci. Polym. Phys. Ed., 38(3), 369 (2000).

    Article  CAS  Google Scholar 

  8. X. Liu, S. He, G. Song, H. Jia, Z. Shi, S. Liu, L. Zhang, J. Lin and S. Nazarenko, J. Membr. Sci., 504, 206 (2016).

    Article  CAS  Google Scholar 

  9. H. Zhang, C. Ma, J. Wang, X. Wang, H. Bai and J. Liu, Int. J. Hydrogen Energy, 39, 974 (2014).

    Article  CAS  Google Scholar 

  10. J. Zeng and S. P. Jiang, J. Phys. Chem. C, 115, 11854 (2011).

    Article  CAS  Google Scholar 

  11. L. Melo, R. Benavides, G. Martínez, D. Morales-Acosta, M. M. S. Paula and L. da Silva, Int. J. Hydrogen Energy, 42, 21880 (2017).

    Article  CAS  Google Scholar 

  12. C. Gong, X. Zheng, H. Liu, G. Wang, F. Cheng, G. Zheng, S. Wen, W. C. Law, C. P. Tsui and C. Y. Tang, J. Power Sources, 325, 453 (2016).

    Article  CAS  Google Scholar 

  13. P. Salarizadeh, M. Javanbakht, S. Pourmahdian, M. Sabooni, A. H. Maryam, K. Hooshyari and M. B. Askari, Int. J. Hydrogen Energy, 44, 3099 (2019).

    Article  CAS  Google Scholar 

  14. R. S. Hebbar, A. M. Isloor, K. Ananda and A. F. Ismail, J. Mater. Chem., 4, 764 (2016).

    Article  CAS  Google Scholar 

  15. A. Rico-Zavala, M. P. Gurrola, L. G. Arriaga, J. A. Bañuelos, A. Carbone, A. Sacca, F. V. Matera, R. Pedicini, A. Alvarez and J. Ledesma-Garcia, Renew. Energy, 122, 163 (2018).

    Article  CAS  Google Scholar 

  16. S. H. A. Samaei, Gh. Bakeri and M. Soleimani Lashkenari, J. Appl. Polym. Sci., 138(20), 50430 (2021).

    Article  CAS  Google Scholar 

  17. P. Salarizadeh, M. Javanbakht and S. Pourmahdian, Solid State Ion., 281, 12 (2015).

    Article  CAS  Google Scholar 

  18. M. Rezakazemi, M. Sadrzadeh, T. Mohammadi and T. Matsuura, in Organic-inorganic composite polymer electrolyte membranes, D. Inamuddin, A. Mohammad, A. Asiri Eds., Springer, Cham. (2017).

  19. M. Rahimnejad, M. Ghasemi, G. D. Najafpour, M. Ismail, A. W. Mohammad, A. A. Ghoreyshi and S. H Hassan, Electrochim. Acta, 85, 700 (2012).

    Article  CAS  Google Scholar 

  20. M. J. Parnian, S. Rowshanzamir and F. Gashoul, Energy, 125, 614 (2017).

    Article  CAS  Google Scholar 

  21. Y. Tang, X. Zhigang, X. Xiaolin and Z. Xingping, Sensor Actuat. A-Phys., 238, 167 (2016).

    Article  CAS  Google Scholar 

  22. I. Bekri-Abbes, S. Bayoudh, M. Baklouti, E. Papon and D. LeClercq, Prog. Rubber. Plast. Re., 22, 179 (2006).

    CAS  Google Scholar 

  23. D. Lin, X. Yan, G. He, X. Wu, Z. Hu and Y. Wang, Int. J. Hydrogen Energy, 37, 11853 (2012).

    Article  Google Scholar 

  24. H. Wu, S. Xiaohui, C. Ying, L. Zhen and J. Zhongyi, J. Membr. Sci., 451, 74 (2014).

    Article  CAS  Google Scholar 

  25. L. Zhang and M. Sanjeev, J. Electrochem. Soc., 153, 1062 (2006).

    Article  Google Scholar 

  26. H. Dogan, T. Y. Inan, E. Unveren and M. Kaya, Int. J. Hydrogen Energy, 35, 7784 (2010).

    Article  CAS  Google Scholar 

  27. D. J. Kim, D. H Choi, C.H. Park and S. Y. Nam, Int. J. Hydrogen Energy, 41, 5793 (2016).

    Article  CAS  Google Scholar 

  28. Q. Xie, Y. Li, X. Chen, J. Hu, L. Li and H. Li, J. Power Sources, 282, 489 (2015).

    Article  CAS  Google Scholar 

  29. C. A. De León-Condés, G. Roa-Morales, G. Martínez-Barrera, P. Balderas-Hernández, C. Menchaca-Campos and F. Ureña-Núñez, J. Environ. Chem. Eng., 7(1), 102841 (2019).

    Article  Google Scholar 

  30. L. Fukuhara, N. Kado, K. Kosugi, P. Suksawad, Y. Yamamoto, H. Ishii and S. Kawahara, Solid State Ion., 268, 191 (2014).

    Article  CAS  Google Scholar 

  31. Y. Peng, Y. Shen, M. Ge, Z. Pan, W. Chen and B. Gong, Food Chem., 275, 377 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. P. Chen, H. Lie, W. Wenjia, Y. Li and J. Wang, Electrochim. Acta, 212, 426 (2016).

    Article  CAS  Google Scholar 

  33. S. He, W. Dai, W. Yang, S. Liu, X. Bian, C. Zhang and J. Lin, Polym. Test., 73, 242 (2019).

    Article  CAS  Google Scholar 

  34. S. Ayaz and H. Y. Yu, Polym. Test., 93, 106941 (2021).

    Article  CAS  Google Scholar 

  35. M. J. Parnian, S. Rowshanzamir, A. K. Prasad and S. G. Advani, J. Membr. Sci., 556, 12 (2018).

    Article  CAS  Google Scholar 

  36. M. J. Janik, R. J. Davis and M. Neurock, J. Am. Chem. Soc., 127, 5238 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. B. Zhang, Y. Cao, Z. Li, H. Wu, Y. Yin, L. Cao, X. He and Z. Jiang, Electrochim. Acta, 240, 186 (2017).

    Article  CAS  Google Scholar 

  38. J. Wang, H. Bai, H. Zhang, L. Zhao, H. Chen and Y. Li, Electrochim. Acta, 152, 443 (2015).

    Article  CAS  Google Scholar 

  39. J. Chen, Q. Guo, D. L. J. Tong and X. Li, Prog. Nat. Sci., 22, 26 (2012).

    Article  Google Scholar 

  40. Y. Ji, Z. Y. Tay and S. F. Y. Li, J. Membr. Sci., 539, 197 (2017).

    Article  CAS  Google Scholar 

  41. Z. Mossayebi, T. Saririchi, S. Rowshanzamir and M. J. Parnian, Int. J. Hydrogen Energy, 41, 12293 (2016).

    Article  CAS  Google Scholar 

  42. T. Roy, S. K. Wanchoo and K. Pal, Solid State Ion., 349, 115296 (2020).

    Article  CAS  Google Scholar 

  43. D. Rana, B. M. Mandal and S. N. Bhattacharyya, Macromolecules, 29(5), 1579 (1996).

    Article  CAS  Google Scholar 

  44. D. Rana, B. M. Mandal and S. N. Bhattacharyya, Polymer, 34(7), 1454 (1993).

    Article  CAS  Google Scholar 

  45. A. R. Kim, M. Vinothkannan and D. J. Yoo, Int. J. Hydrogen Energy, 42, 4349 (2017).

    Article  CAS  Google Scholar 

  46. E. V. Safronova, D. V. Golubenko, N. V. Shevlyakova, M. G. D’yakova, V. A. Tverskoi, L. Dammak, D. Grande and A. B. Yaroslavtsev, J. Membr. Sci., 515, 196 (2016).

    Article  CAS  Google Scholar 

  47. I. Ressam, A. El. Kadib, M. Lahcini, G. A. Luinstra, H. Perrot and O. Sel, Int. J. Hydrogen Energy, 43, 18578 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Babol Noshirvani University of Technology of Iran through research grant program No. BNUT/389081/98.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Bakeri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samaei, S.HA., Bakeri, G. & Lashkenari, M.S. A comparative study on the performance of highly conductive sulfonated poly(ether ether ketone) PEM modified by halloysite nanotubes, sulfonated polystyrene and phosphotungstic acid. Korean J. Chem. Eng. 39, 353–366 (2022). https://doi.org/10.1007/s11814-021-0990-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0990-2

Keywords

Navigation