Skip to main content
Log in

Selective separation of gallium from various ions by polymer inclusion membranes based on CTA/PVC blend using TOPO as carrier

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Selective transport of gallium from HCl media containing other ions such as Zn, Co, and Ni, by polymer inclusion membranes (PIM), based on CTA/PVC blend using trioctylphosphine oxide (TOPO) as carrier and 2-nitrophenylpentyl ether (2-NPPE) as plasticizer is studied. The effect of various parameters such as the HCl concenration in the feed, HCl concenration in the stripping phase, carrier (TOPO) concentration, 2-NPPE concentration, the cellulose triacetate (CTA)/poly(vinyl chloride) (PVC) as the polymer-blend was experimentally studied and the optimum conditions were determined. It was possible to selectively extract gallium ions from the ions (Zn, Co, and Ni) in the acidic solutions. The separation factors of gallium over Zn, Co, and Ni, at the optimum conditions, were found to be of 963, 702, and 514, respectively, for the feed solution of 100 mg/dm3 Ga, 1,000 mg/dm3 Zn, 600 mg/dm3 Co, and 600 mg/dm3 Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Gupta, N. Mudhar, I. Zarena Begum and I. Singh, Hydrometallurgy, 87, 18 (2007).

    Article  CAS  Google Scholar 

  2. R. R. Moskalyk, Miner. Eng., 16(10), 921 (2003).

    Article  CAS  Google Scholar 

  3. I. Mihaylov and P. A. Distin, Hydrometallurgy, 28, 13 (1992).

    Article  CAS  Google Scholar 

  4. Z. S. Abisheva, I. A. Blaida, E. I. Ponomareva and A. M. Rozen, Hydrometallurgy, 37, 393 (1995).

    Article  CAS  Google Scholar 

  5. S. Raiguel, W. Dehaen and K. Binnemans, Dalton Transact., 49(11), 3532 (2020).

    Article  CAS  Google Scholar 

  6. E. Rodriguez de San Miguel, J. C. Aquilar, M. T. C. Rodriguez and J. de Gyves, Hydrometallurgy, 57, 151 (2000).

    Article  CAS  Google Scholar 

  7. I. M. Ahmed, Y. A. El-Nadi and N. E. El-Hefni, Hydrometallurgy, 131-132, 24 (2013).

    Article  Google Scholar 

  8. M. S. Lee, J. G. Ahn and E. C. Lee, Hydrometallurgy, 63, 269 (2002).

    Article  CAS  Google Scholar 

  9. X. Zhang, G. Yin and Z. Hu, Talanta, 59, 905 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. W.-S. Chen, S.-H. Huang, F.-C. Chang, J.-E. Chang and Y.-N. Wang, Desal. Water Treatment, 54, 1452 (2015).

    Article  CAS  Google Scholar 

  11. I. M. Ahmed, Z. H. Ismail and M. M. Hamed, J. Radioanal. Nucl. Chem., 317(2), 969 (2018).

    Article  CAS  Google Scholar 

  12. A. Assadian and A. Ahmadi, Mineral. Eng., 148, 106207 (2020).

    Article  Google Scholar 

  13. J. Draxler and R. J. Marr, Chem. Eng. Process, 20, 319 (1986).

    Article  CAS  Google Scholar 

  14. N. Parthasarathy, M. Pelletier and J. Buffle, Anal. Chim. Acta, 35, 183 (1997).

    Article  Google Scholar 

  15. F. J. Alguacil, Revista de Metalurgia, 38(6), 419 (2002).

    Article  CAS  Google Scholar 

  16. N. Alizadeh, S. Salimi and A. Jabbari, Sep. Purif. Technol., 28, 173 (2002).

    Article  CAS  Google Scholar 

  17. R. A. Kumbasar and O. Tutkun, Hydrometallurgy, 75(1–4), 111 (2004).

    Article  CAS  Google Scholar 

  18. R. A. Kumbasar and O. Tutkun, Sep. Sci. Technol., 41(12), 2825 (2006).

    Article  CAS  Google Scholar 

  19. X. J. Zhang, J. H. Liu and T. S. Lu, Water Treatment, 2, 127 (1987).

    CAS  Google Scholar 

  20. J. Draxler, W. Fürst and R. J. Marr, J. Memb. Sci., 38, 281 (1988).

    Article  CAS  Google Scholar 

  21. S. D. Kolev, in Encyclopedia of analytical science, P. Worsfold, A. Townshend and C. Poole eds., Elsevier, Amsterdam (2005).

    Google Scholar 

  22. A.M. St John, R.W. Cattrall and S.D. Kolev, J. Memb. Sci., 364(1–2), 354 (2010).

    Article  CAS  Google Scholar 

  23. L. D. Nghiem, P. Mornane, I. D. Potter, J. M. Perera, R. W. Cattrall and S. D. Kolev, J. Memb. Sci., 281, 7 (2006).

    Article  CAS  Google Scholar 

  24. C.-V. I. Gherasim, G. Bourceanu, R.-I. Olariu and C. Arsene, J. Memb. Sci., 377, 67 (2011).

    Article  Google Scholar 

  25. S. Kagaya, R. W. Cattrall and S. D. Kolev, Anal. Sci., 27, 653 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. N. Abdellaoui and O. Arous, Macromol. Symp., 386(1), 201800244 (2019).

    Google Scholar 

  27. F. Sellami, O. Kebiche-Senhadji, S. Marais, N. Couvrat and K. Fatyeyeva, React. Funct. Polym., 139, 120 (2019).

    Article  CAS  Google Scholar 

  28. Y. Hasegawa, T. Shimada and M. Nitsu, J. Inorg. Nucl. Chem., 42, 1487 (1980).

    Article  CAS  Google Scholar 

  29. K. Yamamoto and N. Katoh, Anal. Sci., 15, 1013 (1999).

    Article  CAS  Google Scholar 

  30. T. Sato, T. Nakamura and S. Ishikawa, Solvent Extr. Ion. Exch., 2(2), 201 (1984).

    Article  CAS  Google Scholar 

  31. B. Gutierrez, C. Pazos and J. Coca, J. Chem. Tech. Biotechnol., 61, 241 (1994).

    Article  CAS  Google Scholar 

  32. V Judin and R. G. Bautista, Metallurgical Trans. B, 17B, 259 (1986).

    Article  CAS  Google Scholar 

  33. K. Fujinawa, M. Akiyama, A. Shono, N. Imaishi and M. Hozawa, Kagaku Kogaku Ronbunshu, 15, 381 (1989).

    Article  CAS  Google Scholar 

  34. I. Kirgios, K. Schügerl and W. Degener, US Patent, 5,326,441 (1994).

  35. S. P. Kusumocahyo, T. Kanamori, K. Sumaru, S. Aomatsu, H. Matsuyama, M. Teramoto and T. Shinbo, J. Memb. Sci., 244, 251 (2004).

    Article  CAS  Google Scholar 

  36. O. Kebiche-Senhadji, S. Tingry, P. Seta and M. Benamor, Desalination, 258, 59 (2010).

    Article  CAS  Google Scholar 

  37. B. Pospiech, Sep. Sci. Technol., 47(9), 1413 (2012).

    Article  CAS  Google Scholar 

  38. S. Mohebali, M. Nazari, A. Rahbar-Kelishami and P. Davoodi-Nasab, Desal. Water Treat., 64, 173 (2017).

    Article  CAS  Google Scholar 

  39. C. Zidi, R. Tayeb and M. Dhahbi, J. Hazard. Materials, 194, 62 (2011).

    Article  CAS  Google Scholar 

  40. Y. Yildiz, A. Manzak and O. Tutkun, Desal. Water Treat., 57(10), 4616 (2016).

    CAS  Google Scholar 

  41. X. Meng, C. Gao, L. Wang, X. Wang and W. Tang, J. Membr. Sci., 493, 615 (2015).

    Article  CAS  Google Scholar 

  42. P. Venkateswaran, A. Navaneetha and K. Palanivelu, J. Environ. Sci., 19, 1446 (2007).

    Article  CAS  Google Scholar 

  43. C. A. Kozlowski and W. Walkowiak, J. Membr. Sci., 266, 143 (2005).

    Article  CAS  Google Scholar 

  44. C. A. Kozlowski and W. Walkowiak, Water Res., 36, 4870 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. M. Baczynska, M. Regel-Rosocka, M. Nowicki and M. Wisniewski, J. Appl. Polym. Sci., 132(30), 42319 (2015).

    Article  Google Scholar 

  46. E. Rodriguez de San Miguel, A. V. Garduno-Garcia, J. C. Aguilar and J. de Gyves, Ind. Eng. Chem. Res., 46, 2861 (2007).

    Article  Google Scholar 

  47. H. K. Haghighi, M. Irannajad and D. Moradkhani, Physicochem. Probl. Miner. Process., 55(1), 225 (2019).

    CAS  Google Scholar 

  48. S. Rehman, G. Akhtar, M. A. Chaudry, K. Ali and N. Ullah, J. Membr. Sci., 389, 287 (2012).

    Article  CAS  Google Scholar 

  49. S. P. Kusumocahyo, K. Sumaru, T. Iwatsubo, T. Shinbo, T. Kanamori, H. Matsuyama and M. Teramoto, J. Membr. Sci., 280(1–2), 73 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to thank the Kyrgyz-Turkish Manas University, Kyrgyzstan for providing facilities and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Tutkun.

Additional information

Declaration of Competing Interest

The authors do not have any conflict of interest in the publication of the interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tutkun, O., Kaparova, K. Selective separation of gallium from various ions by polymer inclusion membranes based on CTA/PVC blend using TOPO as carrier. Korean J. Chem. Eng. 39, 1011–1019 (2022). https://doi.org/10.1007/s11814-021-0986-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0986-y

Keywords

Navigation