Skip to main content

Advertisement

Log in

Fuel filling time estimation for hydrogen-powered fuel cell electric vehicle at different initial conditions using dynamic simulation

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The hydrogen fuel filling time for hydrogen-powered fuel cell electric vehicles at different initial conditions was estimated through dynamic simulation by using Aspen Dynamics v.11 with Peng-Robinson as the thermodynamic model. The simulation process was divided into three parts, in which the different storage vessels (LP, MP, and HP banks) act as the sole hydrogen source. The SAE J2601 standard was used as the basis for the fueling operation. For the fast filling of the car tank with hydrogen gas, a detailed heat transfer modeling suited for the process was elaborated to correctly predict the in-cylinder temperature throughout the fueling operation. During the dynamic simulation, the station pressure, the state-of-charge %, the car tank temperature, the hydrogen flow rate, the amount of hydrogen gas accumulated in the car tank, and the high-pressure storage vessels’ conditions were monitored and confirmed according to their expected values or limits. It is determined that the fueling times calculated in the dynamic study were faster than their corresponding estimated values for all cases, indicating the integrity of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Johnston, M. C. Mayo and A. Khare, Technovation, 25, 569 (2005).

    Article  Google Scholar 

  2. J.-Q. Li, N.-S. Myoung, J.-T. Kwon, S.-J. Jang and T. Lee, Energies, 13(23), 6428 (2020).

    Article  CAS  Google Scholar 

  3. J.-Q. Li, J.-C. Li, K. Park, S.-J. Jang and T. Lee, Energies, 14(9), 2635 (2021).

    Article  CAS  Google Scholar 

  4. Y. Ma, X. R. Wang, T. Li, J. Zhang, J. Gao and Z. Y. Sun, Int. J. Hydrogen Energy, 46(54), 27330 (2021).

    Article  CAS  Google Scholar 

  5. M. Nagpal and R. Kakkar, Int. J. Hydrogen Energy, 43(27), 12168 (2018).

    Article  CAS  Google Scholar 

  6. N. Sazali, Int. J. Hydrogen Energy, 45(38), 18753 (2020).

    Article  CAS  Google Scholar 

  7. J. O. Abe, A. P. I. Popoola, E. Ajenifuja and O. M. Popoola, Int. J. Hydrogen Energy, 44(29), 15072 (2019).

    Article  CAS  Google Scholar 

  8. D. Mori and K. Hirose, Int. J. Hydrogen Energy, 34(10), 4569 (2009).

    Article  CAS  Google Scholar 

  9. M. Li, Y. Bai, C. Zhang, Y. Song, S. Jiang, D. Grouset and M. Zhang, Int. J. Hydrogen Energy, 44(21), 10677 (2019).

    Article  CAS  Google Scholar 

  10. D. J. Han, K. R. Bang, H. Cho and E. S. Cho, Korean J. Chem. Eng., 37(8), 1306 (2020).

    Article  CAS  Google Scholar 

  11. S. M. A. A. Ibrahim, Korean J. Chem. Eng., 31, 1792 (2014).

    Article  Google Scholar 

  12. T. W. Kim, C. Kim, H. Jeong, C. H. Shin and Y. W. Suh, Korean J. Chem. Eng., 37(8), 1427 (2020).

    Article  CAS  Google Scholar 

  13. S. E. Moradi, Korean J. Chem. Eng., 31(9), 1651 (2014).

    Article  CAS  Google Scholar 

  14. S. U. Rather, Korean J. Chem. Eng., 33(5), 1551 (2016).

    Article  CAS  Google Scholar 

  15. R. Krishna, E. Titus, M. Salimian, O. Okhay, S. Rajendran, A. Rajkumar, J. M. G. Sousa, A. L. C. Ferreira, J. C. Gil and J. Gracio, Hydrogen storage for energy application, In Hydrogen storage, IntechOpen (2012).

  16. T. Johnson, R. Bozinoski, J. Ye, G. Sartor, J. Zheng and J. Yang, Int. J. Hydrogen Energy, 40(31), 9803 (2015).

    Article  CAS  Google Scholar 

  17. D. Chapelle and D. Perreux, Int. J. Hydrogen Energy, 31(5), 627 (2006).

    Article  CAS  Google Scholar 

  18. K. Reddi, A. Elgowainy, N. Rustagi and E. Gupta, Int. J. Hydrogen Energy, 42(26), 16675 (2017).

    Article  CAS  Google Scholar 

  19. B. Tanç, H. T. Arat, E. Baltacioğlu and K. Aydın, Int. J. Hydrogen Energy, 44(20), 10120 (2019).

    Article  Google Scholar 

  20. Society of Automotive Engineers (SAE), Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles (Standard J2601_201407), SAE International (2014).

  21. Society of Automotive Engineers (SAE), Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles (Standard J2601_201612), SAE International (2016).

  22. M. Deymi-Dashtebayaz, M. Farzaneh-Gord, N. Nooralipoor and H. Niazmand, Brazilian J. Chem. Eng., 33, 391 (2016).

    Article  CAS  Google Scholar 

  23. M. Deymi-Dashtebayaz, M. Farzaneh-Gord, N. Nooralipoor and S. Rastgar, J. Nat. Gas Sci. Eng., 21, 1099 (2014).

    Article  Google Scholar 

  24. P. H. Oosthuizen and W. E. Carscallen, Compressible fluid flow, McGraw-Hill (1997).

Download references

Acknowledgement

This work is supported by the “R&D Center for Reduction of Non-CO2 Greenhouse gases” (2017002410009) funded by Korea Ministry of Environment (MOE) as Global Top Environment R&D Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungho Cho.

Additional information

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Electronic Supplementary Material

11814_2021_983_MOESM1_ESM.pdf

Fuel filling time estimation for hydrogen-powered fuel cell electric vehicle at different initial conditions using dynamic simulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galanido, R.J., Sebastian, L.J., Asante, D.O. et al. Fuel filling time estimation for hydrogen-powered fuel cell electric vehicle at different initial conditions using dynamic simulation. Korean J. Chem. Eng. 39, 853–864 (2022). https://doi.org/10.1007/s11814-021-0983-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0983-1

Keywords

Navigation