Skip to main content
Log in

The Pareto optimal robust design of generalized-order PI Controllers based on the decentralized structure for multivariable processes

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This paper proposes an optimal tuning approach for designing robust generalized-order proportional integral (PI) controllers based on the multi-objective optimization problem for multivariable processes. Generalized-order means that the order of the integral term could be an integer order or a fractional one. Due to the sophistication of an MIMO process, the decentralized structure based on the simplified decoupling is addressed to reduce the full matrix controller (n2 controllers) to the diagonal form (n controllers). Multi-objective particle swarm optimization (MOPSO) is adopted to design a generalized-order PI controller for each diagonal element of the decoupled matrix. The objective functions are to minimize the integrated absolute error (IAE) for both servomechanism and regulator problems which are normally conflicting in terms of system performance. In the first stage, a Pareto front (PF) including the optimal solutions is obtained, then in the second stage, the most appropriate control parameters are chosen from the PF based on the maximum peak of the sensitivity function (Ms). The robustness stability of the whole system (the MIMO one) is finally evaluated to guarantee the applicability of the control structure. Some simulation examples in comparison with other well-known methods are presented to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. L. V. Truong and M. Lee, J. Chem. Eng. Japan, 43, 196 (2010).

    Article  Google Scholar 

  2. N. L. V. Truong and M. Lee, J. Chem. Eng. Japan, 46, 279 (2013).

    Article  Google Scholar 

  3. V. L. Chuong T. N. L. Vu, N. T. N. Truong and J. H. Jung, Appl. Sci., 9, 2487 (2019).

    Article  CAS  Google Scholar 

  4. W. L. Bialkowski, Pulp Pap., 11, 19 (1994).

    Google Scholar 

  5. Y. Q. Chen, I. Petras and D. Xue, Fractional order control — a tutorial, American Control Conference (2009).

  6. K. J. Astrom, H. Panagopoulos and T. Hagglund, Automatica, 34(5), 585 (1998).

    Article  Google Scholar 

  7. T. H. Kim, I. Maruta and T. Sugie, Automatica, 44, 1104 (2008).

    Article  Google Scholar 

  8. R. Vilanova, O. Arrieta and P. Ponsa, ISA Trans., 81, 177 (2018).

    Article  CAS  Google Scholar 

  9. A. A. Dastjerdi, B. M. Vinagre, Y. Q. Chen and H. HosseinNia, Annu. Rev. Control, 47, 51 (2019).

    Article  Google Scholar 

  10. F. Padula and A. Visioli, J. Process Control, 21, 69 (2011).

    Article  CAS  Google Scholar 

  11. T. N. L. Vu and M. Lee, ISA Trans., 52, 583 (2013).

    Article  Google Scholar 

  12. R. D. Keyser, C. I. Muresan and C. M. Ionescu, ISA Trans., 62, 268 (2016).

    Article  Google Scholar 

  13. E. Yumuk, M. Guzelkaya and I. Eksin, ISA Trans., 91, 196 (2019).

    Article  Google Scholar 

  14. M. Beschi, F. Padula and A. Visioli, Cont. Eng. Pra., 60, 190 (2016).

    Article  Google Scholar 

  15. M. Moradi, J. Process Control, 24, 336 (2014).

    Article  CAS  Google Scholar 

  16. H. S. Sánchez, F. Padula, A. Visioli and R. Vilanova, ISA Trans., 66, 344 (2017).

    Article  Google Scholar 

  17. A. Hajiloo, N. Nariman-zadeh and A. Moeini, Mechatronics, 22, 788 (2012).

    Article  Google Scholar 

  18. I. Pan and S. Das, Int. J. Electr. Power Energy Syst., 43, 393 (2012).

    Article  Google Scholar 

  19. M. Morari and E. Zafiriou, Robust process control, Englewood Cliffs, Prentice Hall (1989).

    Google Scholar 

  20. S. Skogestad and I. Postlethwaithe, Multivariable feedback control analysis and design, John Wiley & Sons (1996).

  21. C. A. C. Coello and M. S. Lechuga, CEC’02 (Cat. No. 02TH8600), USA, 2, 1051 (2002).

    Google Scholar 

  22. C. A. C. Coello, G. T. Pulido and M. S. Lechuga, IEEE Trans. Evo. Comp., 8(3), 256 (2004).

    Article  Google Scholar 

  23. C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Y. Xue and V. Feliu, Fractional-order systems and controls, fundamentals and applications, Springer-Verlag, London (2010).

    Book  Google Scholar 

  24. V. L. Chuong, T. N. L. Vu, N. T. N. Truong and J. H. Jung, Appl. Sci., 9(23), 5262 (2019).

    Article  Google Scholar 

  25. B. A. Ogunnaike, J. P. Lemaire, M. Morari and W. H. Ray, AIChE J., 29, 632 (1983).

    Article  CAS  Google Scholar 

  26. S. Ghosh and S. Pan, ISA Trans., 110, 117 (2021).

    Article  Google Scholar 

  27. Y. Shen, W.-J. Cai and S. Li, Cont. Eng. Pra., 18(6), 652 (2010).

    Article  Google Scholar 

  28. S. Khandelwal and K. P. Detroja, J. Process Control, 96, 23 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Ho Chi Minh City University of Technology and Education through the project number T2021-24TD and supported by Yeungnam University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Truong Nguyen Luan Vu or Jae Hak Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuong, V.L., Vu, T.N.L., Truong, N.T.N. et al. The Pareto optimal robust design of generalized-order PI Controllers based on the decentralized structure for multivariable processes. Korean J. Chem. Eng. 39, 865–875 (2022). https://doi.org/10.1007/s11814-021-0982-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0982-2

Keywords

Navigation