Skip to main content
Log in

Study on the performance of different discharging devices of a continuous production system

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Based on the developed continuous production system of sodium phenol carboxylation reaction, several types of discharging devices are proposed, which are suitable for the case where the transported particles are not easy to maintain a stable state in the transported fluid. Numerical simulations of the gas-solid two-phase flow characteristics and particle distribution were performed with DPM, and the particle retention ratio and fluid loss degree were proposed to investigate the performance of the discharging devices. The results of simulations and industrial experiments showed that a guide plate installed in the “B” discharging device can solve the accumulation problem, realize the efficient and continuous delivery of the particles, and maintain a uniform distribution of particles. This study can provide a reference for the design of a gas-solid two-phase discharging device, and guide the industrial experimental operation and modification of continuous production systems for sodium phenol carboxylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ux :

gas phase velocity in the x direction [m/s]

uy :

gas phase velocity in the y direction [m/s]

Fp :

the force of the particle on the fluid [N]

Fx :

additional acceleration force [N]

CC :

the Cunningham correction

ds :

particle diameter [mm]

Gk :

turbulent kinetic energy

A:

circle area [m2]

PTn :

particle retention ratio

T:

simulation time [s]

Q:

gas volume flow rate [m3/h]

Qc :

volume flow rate of the refill of the storage tank [m3/h]

αg :

gas phase volume fraction

ρ g :

gas phase density [kg/m3]

μ g :

fluid shear viscosity [kg/(m·s)]

μ t :

turbulent viscosity [kg/(m·s)]

μ :

fluid molecular viscosity [kg/(m·s)]

λ :

average free range of gas molecules

α x(x=k or ω):

effective viscosity

σx(x=k or ι):

diffusion constant of the model

γ a :

uniformity index

Φ :

variable for the specified cross-section

\(\overline \Phi \) :

average of variables for the specified cross-section

References

  1. Y. Devani and P. S. Yelamarthi, J. Food Process. Eng., 42, (2019).

  2. G. Strenzke, R. Dürr, A. Bück and E. Tsotsas, Powder Technol., 375, 210 (2020).

    Article  CAS  Google Scholar 

  3. Z. Y. Duan, S. J. Sun, Z. J. Lan, Y. Wang, J. M. Zhang and J. T. Wang, Powder Technol., 372, 428 (2020).

    Article  CAS  Google Scholar 

  4. D. Geldart, Powder Technol., 7, 285 (1973).

    Article  CAS  Google Scholar 

  5. Y. Jin, H. F. Lu, X. L. Guo and X. Gong, Chem. Eng. Sci., 205, 319 (2019).

    Article  CAS  Google Scholar 

  6. N. M. Tripathi, N. Santo, A. Levy and H. Kalman, Powder Technol., 345, 190 (2019).

    Article  CAS  Google Scholar 

  7. D. Sun, Powder Technol., 390, 354 (2021).

    Article  CAS  Google Scholar 

  8. L. M. Gomes and A. L. A. Mesquita, Chem. Eng. Sci., 104, 780 (2013).

    Article  CAS  Google Scholar 

  9. S. Matsumoto, M. Kikuta and S. Maeda, J. Chem. Eng. Jpn., 10, 273 (1977).

    Article  CAS  Google Scholar 

  10. C. P. Narimatsu and M. C. Ferreira, Brazil. J. Chem. Eng., 18, 221 (2001).

    Article  CAS  Google Scholar 

  11. E. Heinl and M. Bohnet, Chem. Eng. Technol., 27, 1143 (2004).

    Article  CAS  Google Scholar 

  12. S. Laín and M. Sommerfeld, Int. J. Multiph. Flow, 39, 105 (2012).

    Article  Google Scholar 

  13. X. P. Chen, C. L. Fan, C. Liang, W. H. Pu and P. Lu, Korean J. Chem. Eng., 24, 499 (2007).

    Article  CAS  Google Scholar 

  14. C. Liang, X. P. Chen, C. S. Zhao, W. H. Pu and P. Lu, Korean J. Chem. Eng., 26, 867 (2009).

    Article  CAS  Google Scholar 

  15. B. Liu, Z. D. Wu, G. C. Yin and J. X. Liu, Mod. Manuf. Eng., 03, 93 (2018).

    Google Scholar 

  16. O. Orozovic, A. Lavrinec, Y. Alkassar, J. Chen, K. Williams, M. G. Jones and G. E. Klinzing, Powder Technol., 364, 218 (2020).

    Article  CAS  Google Scholar 

  17. Y. F. Wang, Heibei Univ. Technol. (2018).

  18. W. P. Hong, B. H. Wang, Y. Liu and H. R. Li, Powder Technol., 375, 233 (2020).

    Article  CAS  Google Scholar 

  19. K. Sharma, S. S. Mallick and A. Mittal, Powder Technol., 362, 707 (2020).

    Article  CAS  Google Scholar 

  20. Y. Yang, P. Zhang, L. L. He, J. Y. Sun, Z. L. Huang, J. D. Wang and Y. R. Yang, Chem. Eng. Sci., 211, 115260 (2020).

    Article  CAS  Google Scholar 

  21. P. Zhang, Y. Yang, Z. L. Huang, J. Y. Sun, Z. W. Liao, J. D. Wang and Y. R. Yang, Chem. Eng. Sci., 229, 116083 (2020).

    Article  Google Scholar 

  22. Y. J. Xiong, X. L. Guo, X. Gong, W. J. Huang, J. C. Zhao and H. F. Lu, CIESC J., 60, 1421 (2009).

    CAS  Google Scholar 

  23. J. W. Zhou, X. M. Han, S. X. Jing and Y. Liu, Chem. Eng. Res. Des., 157, 92 (2020).

    Article  CAS  Google Scholar 

  24. A. Bansal, S. S. Mallick and P. W. Wypych, Particul. Sci. Technol., 31, 348 (2013).

    Article  CAS  Google Scholar 

  25. H. Li and Y. Tomita, Powder Technol., 107, 144 (2000).

    Article  CAS  Google Scholar 

  26. H. Holmas, Chem. Eng. Sci., 65, 1811 (2010).

    Article  CAS  Google Scholar 

  27. H. Hadziahmetovic, N. Hodzic, D. Kahrimanovic and E. Dzaferovic, Teh. Vjesn., 21, 275 (2014).

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Natural Science Foundation of Shandong Province (Grant No. ZR2020MB122), Shandong Province Taishan Scholar engineering under special funding Foundations, and the Tackling Key Program of Science and Technology in Shandong Province (No. 2019GSF109009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Z., Wang, J., Sun, S. et al. Study on the performance of different discharging devices of a continuous production system. Korean J. Chem. Eng. 39, 876–886 (2022). https://doi.org/10.1007/s11814-021-0971-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0971-5

Keywords

Navigation