Skip to main content
Log in

Composites derived from synthetic clay and carbon sphere: Preparation, characterization, and application for dye decontamination

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Two new composites from synthetic clay-like materials and carbon spheres were developed. Layered doubled hydroxides (LDH) were synthesized from the coprecipitation of Mg2+ and Al3+ ions. Spherical hydrochar (SH) was prepared from pure glucose through hydrothermal carbonization at 190 °C. The composite LDH-SH was synthesized through a simple hydrothermal method of the mixture of LDH and SH. Another composite, LDO-SB, was directly prepared through the carbonization of LDH-SH at 500 °C. Under such high temperature, LDH was converted to layered doubled oxides (LDO), and SH was transferred to spherical biochar (SB). Those materials were characterized by chemical stability, surface morphology and element composition, crystal structure, surface functional group, and textural characteristic. They were applied for removing cationic dye (methylene blue; MB) and anionic dye (Congo red; CR) under different pH solutions. Three adsorption components—kinetics, isotherm, and thermodynamics—were conducted under batch experimenters. Results demonstrated that the LDH or LDO particles were assembled on the surface of SH or SB, respectively. The surface area, total pore volume, and average pore width of LDH-SH and LDO-SB were 58.5 and 198 m2/g, 0.319 and 0.440 cm3/g, and 21.8 and 8.89 nm, respectively. The maximum adsorption capacity of the materials, calculated from the Langmuir model, at 30 °C for CR and MB dyes was 1589 and 78.6 mg/g (LDO-SB) and 499 and 226 mg/g (LDH-SH), respectively. The composites exhibited a higher affinity to anionic than cationic dyes, which resulted from the great contribution of the clay-like materials. Therefore, they can serve as a promising composite for the decolorization of wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Ihsanullah, Chem. Eng. J., 388, 124340 (2020).

    Article  CAS  Google Scholar 

  2. H. N. Tran, D. T. Nguyen, G. T. Le, F. Tomul, E. C. Lima, S. H. Woo, A.K. Sarmah, H.Q. Nguyen, P.T. Nguyen, D.D. Nguyen, T.V. Nguyen, S. Vigneswaran, D.-V N. Vo and H.-P. Chao, J. Hazard. Mater., 373, 258 (2019).

    Article  CAS  Google Scholar 

  3. F. Z. Janani, N. Taoufik, H. Khiar, W. Boumya, A. Elhalil, M. Sadiq, A. V. Puga and N. Barka, Sur. Interfaces, 25, 101263 (2021).

    Article  CAS  Google Scholar 

  4. T.L.P. Galvão, C.S. Neves, A.P.F. Caetano, F. Maia, D. Mata, E. Malheiro, M. J. Ferreira, A. C. Bastos, A. N. Salak, J. R. B. Gomes, J. Tedim and M. G. S. Ferreira, J. Colloid Interface Sci., 468, 86 (2016).

    Article  Google Scholar 

  5. S. Yang, L. Wang, X. Zhang, W. Yang and G. Song, Chem. Eng. J., 275, 315 (2015).

    Article  CAS  Google Scholar 

  6. C. Lei, X. Zhu, B. Zhu, C. Jiang, Y. Le and J. Yu, J. Hazard. Mater., 321, 801 (2017).

    Article  CAS  Google Scholar 

  7. W. Huang, X. Yu and D. Li, RSC Adv., 5, 84937 (2015).

    Article  CAS  Google Scholar 

  8. J. Li, Q. Fan, Y. Wu, X. Wang, C. Chen, Z. Tang and X. Wang, J. Mater. Chem. A, 4, 1737 (2016).

    Article  CAS  Google Scholar 

  9. T. S. Kazeem, M. Zubair, M. Daud, N.D. Mu’azu and M.A. Al-Harthi, Korean J. Chem. Eng., 36, 1057 (2019).

    Article  CAS  Google Scholar 

  10. R.-r. Shan, L.-g. Yan, Y.-m. Yang, K. Yang, S.-j. Yu, H.-q. Yu, B.-c. Zhu and B. Du, J. Ind. Eng. Chem., 21, 561 (2015).

    Article  CAS  Google Scholar 

  11. Y. Wang, T. Du, L. Zhou, Y. Song, S. Che and X. Fang, Korean J. Chem. Eng., 35, 709 (2018).

    Article  CAS  Google Scholar 

  12. F. Yang, S. Zhang, Y. Sun, D. C. W. Tsang, K. Cheng and Y. S. Ok, J. Hazard. Mater., 365, 665 (2019).

    Article  CAS  Google Scholar 

  13. H. N. Tran, C.-C. Lin, S. H. Woo and H.-P. Chao, Appl. Clay Sci., 154, 17 (2018).

    Article  CAS  Google Scholar 

  14. P. Kowalik, M. Konkol, M. Kondracka, W. Próchniak, R. Bicki and P. Wiercioch, Appl. Catal. A-Gen., 464–465, 339 (2013).

    Article  Google Scholar 

  15. G. E. d. S. dos Santos, P. V. d. S. Lins, L. M. T. d. M. Oliveira, E. O. d. Silva, I. Anastopoulos, A. Erto, D. A. Giannakoudakis, A. R. F. d. Almeida, J. L. d. S. Duarte and L. Meili, J. Clean. Prod., 284, 124755 (2021).

    Article  CAS  Google Scholar 

  16. Z. Gao, K. Sasaki and X. Qiu, Langmuir, 34, 5386 (2018).

    Article  CAS  Google Scholar 

  17. C. Gennequin, T. Barakat, H. L. Tidahy, R. Cousin, J. F. Lamonier, A. Aboukaïs and S. Siffert, Catal. Today, 157, 191 (2010).

    Article  CAS  Google Scholar 

  18. H. N. Tran, F. Tomul, H. T. H. Nguyen, D. T. Nguyen, E. C. Lima, G. T. Le, C.-T. Chang, V. Masindi and S. H. Woo, J. Hazard. Mater., 394, 122255 (2020).

    Article  CAS  Google Scholar 

  19. F.-C. Huang, C.-K. Lee, Y.-L. Han, W.-C. Chao and H.-P. Chao, J. Taiwan Inst. Chem. Eng., 45, 2805 (2014).

    Article  CAS  Google Scholar 

  20. H. N. Tran, Y.-C. Wen, Y.-F. Wang and S.-J. You, Environ. Technol., 40, 1376 (2019).

    Article  CAS  Google Scholar 

  21. H. N. Tran, C.-K. Lee, T. V. Nguyen and H.-P. Chao, Environ. Technol., 39, 2747 (2018).

    Article  CAS  Google Scholar 

  22. H. N. Tran, S.-J. You, A. Hosseini-Bandegharaei and H.-P. Chao, Water Res., 120, 88 (2017).

    Article  CAS  Google Scholar 

  23. Q. Zhou, C. Xie, W. Gong, N. Xu and W. Zhou, J. Hazard. Mater., 198, 381 (2011).

    Article  CAS  Google Scholar 

  24. S. K. Lagergren, Sven. Vetenskapsakad. Handingarl, 24, 1 (1898).

    Google Scholar 

  25. G. Blanchard, M. Maunaye and G. Martin, Water Res., 18, 1501 (1984).

    Article  CAS  Google Scholar 

  26. A. Putnis, Kinetics of mineral processes, An Introduction to Mineral Sciences, Cambridge University Press, Cambridge (1992).

    Book  Google Scholar 

  27. É. C. Lima, M. H. Dehghani, A. Guleria, F. Sher, R. R. Karri, G. L. Dotto and H. N. Tran, CHAPTER 3 — Adsorption: Fundamental aspects and applications of adsorption for effluent treatment, Green Technologies for the Defluoridation of Water, Elsevier (2021).

  28. B. Koo and S. P. Jung, Chem. Eng. J., 424, 130388 (2021).

    Article  CAS  Google Scholar 

  29. H. N. Tran, S.-J. You and H.-P. Chao, J. Environ. Manage., 188, 322 (2017).

    Article  CAS  Google Scholar 

  30. H. N. Tran, Y.-F. Wang, S.-J. You and H.-P. Chao, Process Saf. Environ. Prot., 107, 168 (2017).

    Article  CAS  Google Scholar 

  31. A. O. Adesina, O.A. Elvis, N.D. S. Mohallem and S.J. Olusegun, Environ. Technol., 42, 1061 (2021).

    Article  CAS  Google Scholar 

  32. C. Moreno-Castilla, Carbon, 42, 83 (2004).

    Article  CAS  Google Scholar 

  33. S. Chatterjee, M. W. Lee and S. H. Woo, Bioresour. Technol., 101, 1800 (2010).

    Article  CAS  Google Scholar 

  34. N. Kannan and M. Meenakshisundaram, Water Air Soil Pollut., 138, 289 (2002).

    Article  CAS  Google Scholar 

  35. Y. Wu, H. Luo and H. Wang, Sep. Sci. Technol., 49, 2700 (2014).

    Article  CAS  Google Scholar 

  36. D. D. Sewu, P. Boakye and S. H. Woo, Bioresour. Technol., 224, 206 (2017).

    Article  CAS  Google Scholar 

  37. I. M. Ahmed and M. S. Gasser, Appl. Surf. Sci., 259, 650 (2012).

    Article  CAS  Google Scholar 

  38. R. Chang and J. W. Thoman, Jr., Phys. Chem. Chemi. Sci., 779 (2014).

  39. H. N. Tran, S.-J. You and H.-P. Chao, Korean J. Chem. Eng., 34, 1708 (2017).

    Article  CAS  Google Scholar 

  40. M. Paredes-Laverde, M. Salamanca, J. D. Diaz-Corrales, E. Flórez, J. Silva-Agredo and R. A. Torres-Palma, J. Environ. Chem. Eng., 9, 105685 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.02-2019.54.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Nguyen Tran.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2021_940_MOESM1_ESM.pdf

Composites derived from synthetic clay and carbon sphere: Preparation, characterization, and application for dye decontamination

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dat, N.D., Loc, T.T., Trieu, M.T. et al. Composites derived from synthetic clay and carbon sphere: Preparation, characterization, and application for dye decontamination. Korean J. Chem. Eng. 39, 1053–1064 (2022). https://doi.org/10.1007/s11814-021-0940-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0940-z

Keywords

Navigation