Skip to main content
Log in

Performance evaluations of yeast based microbial fuel cells improved by the optimization of dead zone inside carbon felt electrode

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The performance of yeast-based microbial fuel cells (MFCs) and the growth pattern of yeast were evaluated with the optimization of dead zone within carbon felt (CF) electrode. Yeast cells were grown onto the different CFs that have 1 to 4 mm thicknesses, while optical and electrochemical evaluations were implemented to determine the optimal growth pattern of yeast and to elucidate a relationship between the growth pattern of yeast and the performance of MFC. According to the evaluations, biofilm consisting of high-density yeast cells is formed in the upper 1 mm height of CF electrode. As the height goes down, density of yeast cells is reduced to less than half of the upper biofilm, and by calculating the growth rate of yeast cells per CF volume, it is recognized that the coverage of biocatalyst including yeast cell increases from 0.191 to 0.406 µmol/cm3 with decreasing CF thickness. Then, the performance of MFCs using biocatalysts including yeast cells grown on different thick CFs is measured to investigate how the growth pattern of yeast cells affects the performance of MFCs. Results show their maximum power density (MPD) increases linearly as the area that yeast cells are filled increases, and when CF thickness is 1 mm, MPD reaches 417.13 W/m3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Kim, S. H. Jung, J. M. Regan and B. E. Logan, Bioresour. Technol., 98, 2568 (2007).

    Article  CAS  Google Scholar 

  2. O. Schaetzle, F. Barrière and K. Baronian, Energy Environ. Sci., 1, 607 (2008).

    Article  CAS  Google Scholar 

  3. Y. Wang Y. Chen, Q. Wen, H. Zheng, H. Xu and L. Qi, Energy, 189, 116342 (2019).

    Article  CAS  Google Scholar 

  4. B. Min and B. E. Logan, Environ. Sci. Technol., 38, 5809 (2004).

    Article  CAS  Google Scholar 

  5. B. Min, J. R. Kim, S. E. Oh, J. M. Regan and B. E. Logan, Water Res., 39, 4961 (2005).

    Article  CAS  Google Scholar 

  6. K. Rabaey, G. Lissens, S. D. Siciliano and W Verstraete, Biotechnol. Lett, 25, 1531 (2003).

    Article  CAS  Google Scholar 

  7. S. J. Kim and P. Y. Yang, Water Sci. Technol., 49, 281 (2004).

    Article  CAS  Google Scholar 

  8. R. K. Jung, Y. Zuo, J. M. Regan and B. E. Logan, Biotechnol. Bioeng., 99, 1120 (2008).

    Article  Google Scholar 

  9. B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia P. Aelterman, W Verstraete and K. Rabaey, Environ. Sci. Technol., 40, 5181 (2006).

    Article  CAS  Google Scholar 

  10. K Guo, A. H. Soeriyadi, S. A. Patil, A. Prévoteau, S. Freguia J. J. Gooding and K. Rabaey, Electrochem. Commun., 39, 1 (2014).

    Article  Google Scholar 

  11. J. A. Cornejo, C. Lopez, S. Babanova C. Santoro, K. Artyushkova, L. Ista, A. J. Schuler and P. Atanassov, J. Electrochem. Soc., 162, H597 (2015).

    Article  CAS  Google Scholar 

  12. L. Fu, H. Wang, Q. Huang, T. Song and J. Xie, Bioprocess Biosyst. Eng., 43, 373 (2020).

    Article  CAS  Google Scholar 

  13. Y. Liang, H. Feng, D. Shen, N. Li, K. Guo, Y. Zhou, J. Xu, W Chen, Y Jia and B. Huang, J. Power Sources, 342, 98 (2017).

    Article  CAS  Google Scholar 

  14. Y. Fan, S. Xu, R. Schaller, J. Jiao, F. Chaplen and H. Liu, Biosens. Bioelectron., 26, 1908 (2011).

    Article  CAS  Google Scholar 

  15. M. Christwardana, D. Frattini, G. Accardo, S. P. Yoon and Y. Kwon, Appl. Energy, 222, 369 (2018).

    Article  CAS  Google Scholar 

  16. X. Chen, D. Cui, X. Wang, X. Wang and W. Li, Biosens. Bioelectron., 69, 135 (2015).

    Article  CAS  Google Scholar 

  17. K. Rabaey, J. Rodriguez, L. L. Blackall, J. Keller, P. Gross, D. Batstone, W. Verstraete and K. H. Nealson, ISME J., 1, 9 (2007).

    Article  CAS  Google Scholar 

  18. B. E. Logan, Nat. Rev. Microbiol., 7, 375 (2009).

    Article  CAS  Google Scholar 

  19. M. Christwardana, D. Frattini, K. D. Z. Duarte, G. Accardo and Y. Kwon, Appl. Energy, 238, 239 (2019).

    Article  CAS  Google Scholar 

  20. M. Christwardana, D. Frattini, G. Accardo, S.P. Yoon and Y. Kwon, J. Power Sources, 396, 1 (2018).

    Article  CAS  Google Scholar 

  21. K. D. Z. Duarte, D. Frattini and Y. Kwon, Appl. Energy, 256, 113912 (2019).

    Article  CAS  Google Scholar 

  22. D. Frattini, G. Accardo, K. D. Z. Duarte, D. H. Kim and Y. Kwon, Appl. Energy, 261, 114391 (2020).

    Article  CAS  Google Scholar 

  23. Y. Zhao, Y. Ma, T. Li, Z. Dong and Y. Wang, RSC Adv., 8, 2059 (2018).

    Article  CAS  Google Scholar 

  24. Y. Feng, Q. Yang, X. Wang and B. E. Logan, J. Power Sources, 195, 1841 (2010).

    Article  CAS  Google Scholar 

  25. Y. V. Hubenova, R. S. Rashkov, V. D. Buchvarov, M. H. Arnaudova, S. M. Babanova and M. Y Mitov, Ind. Eng. Chem. Res., 50, 557 (2011).

    Article  CAS  Google Scholar 

  26. F. J. Rawson, A. J. Gross, D. J. Garrett, A. J. Downard and K. H. R. Baronian, Electrochem. Commun., 15, 85 (2012).

    Article  CAS  Google Scholar 

  27. M. Christwardana and Y Kwon, Bioresour. Technol., 225, 175 (2017).

    Article  CAS  Google Scholar 

  28. K. Hyun, S. Kang and Y. Kwon, Korean J. Chem. Eng., 36, 500 (2019).

    Article  CAS  Google Scholar 

  29. S. Yang, Y. Chung, K.S. Lee and Y. Kwon, J. Ind. Eng. Chem., 90, 351 (2020).

    Article  CAS  Google Scholar 

  30. M. Christwardana, J. Ji, Y. Chung and Y. Kwon, Korean J. Chem. Eng., 34, 2916 (2017).

    Article  CAS  Google Scholar 

  31. M. Christwardana, D. Frattini, G. Accardo, S. P. Yoon and Y. Kwon, J. Power Sources, 402, 402 (2018).

    Article  CAS  Google Scholar 

  32. K. J. Verstrepen and F. M. Klis, Mol. Microbiol., 60, 5 (2006).

    Article  CAS  Google Scholar 

  33. K. D. Z. Duarte and Y. Kwon, J. Power Sources, 474, 228496 (2020).

    Article  CAS  Google Scholar 

  34. K. D. Z. Duarte and Y. Kwon, J. Power Sources, 474, 228651 (2020).

    Article  CAS  Google Scholar 

  35. M. Kuthan, F. Devaux, B. Janderová, I. Slaninová, C. Jacq and Z. Palková, Mol. Microbiol., 47, 745 (2003).

    Article  CAS  Google Scholar 

  36. L. Váchová, V. Štoví, O. Hlaváčk, O. Chernyavskiy, L. Štěpánek, L. Kubínová and Z. Palková, J. Cell Biol., 194, 679 (2011).

    Article  Google Scholar 

  37. L. Fotouhi, M. Fatollahzadeh and M. M. Heravi, Int. J. Electrochem. Sci., 7, 3919 (2012).

    CAS  Google Scholar 

  38. H. Richter, K. P. Nevin, H. Jia, D. A. Lowy, D. R. Lovley and L. M. Tender, Energy Environ. Sci., 2, 506 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the Research Program funded by the SeoulTech (Seoul National University of Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchai Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyun, K., Kim, S. & Kwon, Y. Performance evaluations of yeast based microbial fuel cells improved by the optimization of dead zone inside carbon felt electrode. Korean J. Chem. Eng. 38, 2347–2352 (2021). https://doi.org/10.1007/s11814-021-0927-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0927-9

Keywords

Navigation