Skip to main content
Log in

UV-Visible spectroscopic and DFT studies of the binding of ciprofloxacin hydrochloride antibiotic drug with metal ions at numerous temperatures

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Ciprofloxacin hydrochloride (CPFH) is a very common antibiotic drug for the treatment of different types of bacterial infections. The activity of the drug depends on the complexation of the employed drug with different metals present in the body. In the current investigation, the complexation behavior of CPFH drug with numerous metal ions was explored by means of UV-Visible spectroscopic and density functional theory (DFT) techniques at various temperatures. The binding constants (Kf) of CPFH+metal ions complexes were determined from the Benesi-Hildebrand equation. The Kf values experience an alteration with the nature of metal ions employed and the change of temperature. The binding of CPFH with alkali earth metals decreases with the increase of metal size and increases with the increase of temperature, while the opposite effect of temperature was observed for transition metals. The Gibbs free energy of binding (ΔGo) for the complexation between CPFH and metal ions was negative in all cases, which reveals that the complexation phenomenon is spontaneous. The values of enthalpy and entropy connote the presence of both hydrophobic and electrostatic interactions. The complexation of CPFH was observed to be endothermic in the case of alkali earth metals while exothermic for transition metals. The intrinsic enthalpy gain (ΔIIo, *) values signify the higher stability of metal-drug complexes. The compensation temperature (TC) values were found to be comparable to the biological systems. DFT studies show the formulation of 1:1 complexes with transition metals as well as the square planar geometry of the complexes. HOMO and LUMO analyses reveal that the stability of CPFH-Ni complexes is higher than that of CPFH-Co/CPFH-Zn complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Waranyoupalin, S. Wongnawa, M. Wongnawa, C. Pakawatchai, P. Panichayupakaranant and P. Sherdshoopongse, Cent. Eur. J. Chem., 7, 388 (2009).

    CAS  Google Scholar 

  2. A. E. Fazary, M. Z. Bani-Fwaz, K. F. Fawy and H. S. M. Abd-Rabboh, J. Mol. Liq., 253, 178 (2018).

    Article  CAS  Google Scholar 

  3. B. Umadevi, P. T. Muthiah, X. Shui and D. S. Eggleston, Inorg. Chim. Acta, 234, 149 (1995).

    Article  CAS  Google Scholar 

  4. R. A. Sanchez-del Grado, M. Navarro, H. Perez and J. A. Urbina, J. Med. Chem., 39, 1095 (1996).

    Article  Google Scholar 

  5. J. Zhou, L.-F. Wang, J.-Y. Wang and N. Tang, J. Inorg. Biochem., 83, 41 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. I. Kostova, I. Manolov, I. Nicolova, S. Konstantinov and M. Karaivanova, Eur. J. Med. Chem., 36, 339 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. M. M. Khalil, A.-E. Radalla, F. Qasem and R. Khaled, Korean J. Chem. Eng., 31, 109 (2014).

    Article  CAS  Google Scholar 

  8. B. Sun, M. Bilal, S. Jia, Y. Jiang and J. Cui, Korean J. Chem. Eng., 36, 1949 (2019).

    Article  CAS  Google Scholar 

  9. I. B. Ivanov, R. I. Slavchov, E. S. Basheva, D. Sidzhakova and S. I. Karakashev, Adv. Colloid Interface Sci., 168, 93 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. V. A. Rana, D. K. Barot, H. P. Vankar, T. R. Pandit and J. B. Karakthala, J. Mol. Liq., 296, 111840 (2019).

    Article  Google Scholar 

  11. I. Turel, Coord. Chem Rev., 232, 27 (2002).

    Article  CAS  Google Scholar 

  12. P. Drevenski, A. Golobic, I. Turel, N. Poklar and K. Sepcic, Acta Chim. Slov., 49, 857 (2002).

    Google Scholar 

  13. D. E. King, R. Malone and S. H. Lilley, Am. Fam. Physicians., 61, 2741 (2000).

    CAS  Google Scholar 

  14. M. A. Hussien, S. M. El-Megharbel and M. S. Refat, J. Mol. Liq., 221, 61 (2016).

    Article  CAS  Google Scholar 

  15. T. Jurca, E. Marian, L. G. Vicaş, M. E. Mureşan and L. Fritea, In Metal complexes of pharmaceutical substances, E. Sharmin and F. Zafar, Eds., IntechOpen Limited, London, UK (2017).

  16. K. H. Thompson and C. Orvig, Science, 300, 936 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. A. E. Martell, Biol. Trace Elem. Res., 21, 295 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. H. Kaur, J. K. Puri and A. Singla, J. Mol. Liq., 182, 39 (2013).

    Article  CAS  Google Scholar 

  19. S. Roya, R. Banerjeea and M. Sarkar, J. Inorg. Biochem., 100, 1320 (2006).

    Article  Google Scholar 

  20. W. Weber and S. Newmark, Pediatr. Clin. North Am., 54, 983 (2007).

    Article  PubMed  Google Scholar 

  21. S. V. Lapshin and V. G. Alekseev, Russian J. Inorg. Chem., 54, 1066 (2009).

    Article  Google Scholar 

  22. S. N. Chadar, F. Khan and S. Sharma, Chemija, 19, 1 (2008).

    CAS  Google Scholar 

  23. F. Khan, J. Chinese Chem. Soc., 54, 673 (2007).

    Article  CAS  Google Scholar 

  24. K. O. Ogunniran, K. O. Ajanaku, O. O. James, O. O. Ajani, J. A. Adekoya and O. C. Nwinyi, Afr. J. Pure Appl. Chem., 2, 069 (2008).

    Google Scholar 

  25. E. L. Chang, C. Simmers and D. A. Knight, Pharmaceuticals, 3, 1711 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. L. Nagy, G. Csintalan, E. Kalman, P. Sipos and A. Szventnik, Acta Pharmaceutica Hungarica., 73, 221 (2003).

    CAS  PubMed  Google Scholar 

  27. A. M. Qandil, L. O. Al-Zoubi, A. G. Al-Bakri, H. A. Amawi, Q. A. Al-Balas, A. M. Alkatheri and A. M. Albekairy, Antibiotics, 3, 244 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. H. Zuyun and C. Rux, Analyst, 125, 1477 (2000).

    Article  Google Scholar 

  29. W. D. Wilson, In: G. M. Blacksburn, M. J. Gait, Nucleic acids in chemistry and biology, IRL Press, New York (1990).

    Google Scholar 

  30. C. J. Eboka and H. A. Okeri, Trop. J. Pharm. Res., 4, 349 (2005).

    Google Scholar 

  31. Z. H. Chohan, C. T. Supuran and A. Scozzafava, J. Enzyme Inhib. Med. Chem., 20, 303 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. J. Panda, S. Das, A. K. Patnaik and S. Padhi, J. Pharm. Innov., 16, 454 (2021).

    Article  Google Scholar 

  33. P. R. Mishra, G. K. Gupta, V. Jain, G. B. S. Keshava and P. K. Shukla, Ciprofloxacin Surf-plexes as Emulsion to Improve Antimicrobial Efficacy, International Conference on Bioencapsulation 14th Groningen, Netherland (2009).

  34. S. P. Gupta, MOJ Biorg. Org. Chem., 2, 221 (2018).

    Google Scholar 

  35. S. J. Lippard and J. M. Berg. Principles of bioinorganic chemistry, Mill Valley, University Science Books (1994).

    Google Scholar 

  36. J. A. Cowan, Inorganic biochemistry/An introduction, Wiley-VCH, New Jersey (1994).

    Google Scholar 

  37. A. S. Prasad, Zinc deficiency and its therapy, In: H. G. Seiler and H. Sigel (Eds.) Metal Ions in Biological Systems, vol. 14, Marcel Dekker, New York (1982).

    Google Scholar 

  38. J. Anastassopoulou and T. Theophanides, The role of metal ions in biological systems and medicine, In: D. P. Kessissoglou (Eds.) Bioinorganic Chemistry, NATO ASI Series (Series C: Mathematical and Physical Sciences), vol. 459. Springer, Dordrecht (1995).

    Google Scholar 

  39. M. A. Hoque, M. D. Hossen, S. Mahbub, S. Aktar, M. M. Rahman, M. A. Rub, D. M. S. Islam, A. Khan and A. M. Asiri, Russian J. Phys. Chem. A, 94, 2752 (2020).

    Article  CAS  Google Scholar 

  40. M. A. Hoque, M. M. Rahman, S. Mahbub, M. Hossain, M. A. Khan, M. R. Amin, A. S. Alqahtani, M. Z. Ahmed, M. S. Alqahtani and O. M. Almarfadi, Korean J. Chem. Eng., 38, 1487 (2021).

    Article  CAS  Google Scholar 

  41. H. R. Park, K. Y. Chung, H. C. Lee, J. K. Lee and K. M. Bark, Bull. Korean Chem. Soc., 21, 849 (2000).

    CAS  Google Scholar 

  42. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuceria, M. A. Rob, J. R. Cheeseman and J. R. Pople, Gaussian 03, Revision A.1, Gaussian, Inc., Pittsburgh, Pa, USA (2003).

    Google Scholar 

  43. A. D. Becke, J. Chem. Phys., 98, 5648 (1993).

    Article  CAS  Google Scholar 

  44. E. C. L. Cazedey and H. R. N. Salgado, Adv. Anal. Chem., 2, 74 (2012).

    Google Scholar 

  45. C. A. Akinremi, J. A. Obaleye, S. A. Amolegbe, J. F. Adediji and M. O. Bamigboye, Int. J. Med. Biomed. Res., 1, 24 (2012).

    Article  Google Scholar 

  46. K. Ganesh, C. Balraj, A. Satheshkumar and K. P. Elango, Arabian J. Chem., 12, 503 (2019).

    Article  CAS  Google Scholar 

  47. I. D. Kuntz Jr., F. P. Gasparro, M. D. Johnston Jr. and R. P. Taylor, J Am. Chem. Soc., 90, 4778 (1968).

    Article  CAS  Google Scholar 

  48. S. Mahbub, I. Shahriar, M. Iqfath, M. A. Rub, M. A. Hoque M. A. Halim, M. A. Khan and A. M. Asiri, J. Environ. Chem. Eng., 7, 103364 (2019).

    Article  CAS  Google Scholar 

  49. K. S. Siddiqi, A. Mohd, A. A. P. Khan and S. Ban, J. Korean Chem. Soc., 53, 152 (2009).

    Article  CAS  Google Scholar 

  50. E. Koculi, C. Hyeon, D. Thirumalai and S. A. Woodson, J. Am. Chem. Soc., 129, 2676 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. N. Patra, A. Mal, A. Dey and S. Ghosh, J. Mol. Liq., 280, 307 (2019).

    Article  CAS  Google Scholar 

  52. M. A. R. Khan, M. R. Amin, M. A. Rub, M. A. Hoque, M. A. Khan and A. M. Asiri, J. Chem. Eng. Data, 64, 668 (2019).

    Article  Google Scholar 

  53. M. A. Hoque, S. Mahbub, M. A. Rub, S. Rana and M. A. Khan, Korean J. Chem. Eng., 35, 2269 (2018).

    Article  CAS  Google Scholar 

  54. P. D. Ross and S. Subramanian, Biochemistry, 20, 3096 (1981).

    Article  CAS  PubMed  Google Scholar 

  55. T. S. Banipal, N. Kaur and P. K. Banipal, J. Mol. Liq., 223, 1048 (2016).

    Article  CAS  Google Scholar 

  56. E. Pramauro and E. Pelizzetti, Surfactants in analytical chemistry: Applications of organized media, in: S. G. Weber (Ed.), Comprehensive Analytical Chemistry, Elsevier, Amsterdam (1996).

    Google Scholar 

  57. A. Beesley, D. F. Evans and R. G. Laughlin, J. Phys. Chem., 92, 791 (1988).

    Article  CAS  Google Scholar 

  58. M. R. Amin, S. Mahbub, S. Hidayathulla, M. M. Alam, M. A. Hoque and M. A. Rub, J. Mol. Liq., 269, 417 (2018).

    Article  CAS  Google Scholar 

  59. S. Mahbub, M. A. Rub, and M. A. Hoque, J. Chem. Eng. Data, 64, 4181 (2019).

    Article  CAS  Google Scholar 

  60. S. Aktar, M. Robel Molla, S. Mahbub, M. A. Rub, M. A. Hoque and D. M. S. Islam, J. Dispers. Sci. Technol., 40, 574 (2019).

    Article  CAS  Google Scholar 

  61. M. Rahman, M. A. Hoque, M. A. Rub and M. A. Khan, Chinese J. Chem. Eng., 27, 1895 (2019).

    Article  CAS  Google Scholar 

  62. Y. Zheng, X. Lu, L. Lai, L. Yu, H. Zheng and C. Dai, J. Mol. Liq., 299, 112108 (2020).

    Article  CAS  Google Scholar 

  63. C. Jolicoeur and P. R. Philip, Can. J. Chem., 52, 1834 (1974).

    Article  CAS  Google Scholar 

  64. R. Lumry and S. Rajender, Biopolymers, 9, 1125 (1970).

    Article  CAS  PubMed  Google Scholar 

  65. V. Uivarosi, Molecules, 18, 11153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. S. Esmaielzadeh and G. Mashhadiagha, Bull. Chem. Soc. Ethiop., 31, 159 (2017).

    Article  CAS  Google Scholar 

  67. A. H. Kianfar and R. H. Fath, Egyptian J. Petrol., 26, 865 (2017).

    Article  Google Scholar 

  68. A. Üngördü and N. Tezer, J. Saudi Chem. Soc., 21, 837 (2017).

    Article  Google Scholar 

  69. S. Kumar, V. Saini, I. K. Maurya, J. Sindhu, M. Kumari, R. Kataria and V. Kumar, PLoS ONE, 13, e0196016 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. S. M. A. Ridha, Z. A. Saleh and F. W. Askar, Phys. Chem., 5, 6 (2015).

    Google Scholar 

Download references

Acknowledgement

The Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia has funded this project, under grant no. (KEP-38-130-42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malik Abdul Rub.

Ethics declarations

No potential conflict of interest was reported by the authors.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2021_924_MOESM1_ESM.pdf

UV-Visible spectroscopic and DFT studies of the binding of ciprofloxacin hydrochloride antibiotic drug with metal ions at numerous temperatures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, M.A., Sutonu, B.H., Rub, M.A. et al. UV-Visible spectroscopic and DFT studies of the binding of ciprofloxacin hydrochloride antibiotic drug with metal ions at numerous temperatures. Korean J. Chem. Eng. 39, 664–673 (2022). https://doi.org/10.1007/s11814-021-0924-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0924-z

Keywords

Navigation