Skip to main content

Advertisement

Log in

Economic-energy-exergy-risk (3ER) assessment of novel integrated ammonia synthesis process and modified sulfur-iodine cycle for co-production of ammonia and sulfuric acid

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A novel integrated modified sulfur cycle and ammonia production process was suggested for the co-generation of sulfuric acid. Exergy analysis, heat integration, and safety assessment were conducted to investigate the feasibility and analyze the process. The exergy analysis showed that the highest exergy destruction occurred in the section with the most considerable temperature difference involved with a large flow rate. The heat integration — an economic assessment, confirmed that the total cost was estimated to be reduced by 10.9% at the minimum temperature difference of 39 °C. The failure rate contribution to the overall system was 19%, 11%, 22%, and 47% from the Bunsen section, H2SO4 concentration section, HI decomposition section, ammonia production section explosion, fire, and structural damage contributed 82%, 16%, and 2% to the overall system in terms of accident scenario. The accident cost contributed 84% and 16% of accident injury costs to the overall system, respectively. For the sectional based contribution, section 1 (Bunsen process), SA concentration, section 3, and ammonia production process contributed 45%, 29%, 19%, and 6% to the accident injury cost in the overall system, respectively. As a result of individual section failure to the whole section, failure in Bunsen process and HI decomposition led to failure in production of all the products. Failure in NH3 production section led to production in concentrated H2SO4 and H2. The failure in H2SO4 section leads to production in NH3 and diluted H2SO4 concentration. The failure in H2SO4 concentration, NH3 production, and Bunsen process and HI decomposition contributed to the higher failure rate in ascending order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Rosen, Energy, 35, 1068 (2010).

    Article  CAS  Google Scholar 

  2. A. A. Kiss, C. S. Bileda and J. Grievink, Chem. Eng. J., 158, 241 (2010).

    Article  CAS  Google Scholar 

  3. M. Tejada-Iglesias, J. Szuba, R. Koniuch and L. Ricardez-Sandoval, Ind. Eng. Chem. Res., 57, 8253 (2018).

    Article  Google Scholar 

  4. Grand View Research. Sulfuric Acid Market Size, Share & Trends Analysis Report by Raw Material (Element Sulfur, Base Metal Smelters, Pyrite Ore), By Application (Fertilizers, Chemical Manufacturing, Refinery, Textile), and Segment Forecasts, 2018–2025. GRV-2-68038-231-0; 2016.

  5. Grand View Research. Ammonia Market Size, Share & Trends Analysis Report by Product Form (Liquid, Gas, Powder), by Application (Fertilizers, Textile, Pharmaceuticals, Refrigerants), by Region, and Segment Forecasts, 2018–2025. GRV-2-68038-207-5; 2017.

  6. B. Lee, J. Park, H. Lee, M. Byun, C. W. Yoon and H. Lim, Renew. Sustain. Energy Rev., 113, 109262 (2019).

    Article  CAS  Google Scholar 

  7. M. J. King, W. G. Davenport and M. S. Moats, Sulfuric Acid Manufacture Analysis, Control, and Optimization. Elsevier (2013).

  8. O. Kirk, Encyclopedia of chemical technology, John Wiley & Sons (1984).

  9. Y. Bicer, D. Iharahim, Z. Calin, V. Greg and R. Frank, J. Clean. Prod., 135, 1379 (2016).

    Article  CAS  Google Scholar 

  10. Z. Hanfei, W. Ligang, V. Jan, M. Francois and D. Umberto, Appl. Energy, 208, 195 (2017).

    Article  Google Scholar 

  11. D. Orrego, S. Sharma, S. Oliveira Jr. and F. Marechal, J. Clean. Prod., 44, 118647 (2020).

    Article  Google Scholar 

  12. S. Hwangbo, S. Lee and C. Yoo, Appl. Energy, 208, 195 (2017).

    Article  CAS  Google Scholar 

  13. L. Zhu, L. Li and J. Fan, Chem. Eng. Res. Des., 104, 792 (2015).

    Article  CAS  Google Scholar 

  14. M. Mehrpooy and R. Habibi, J. Clean. Prod., 275, 12386 (2020).

    Google Scholar 

  15. J. H. Norman, G. E. Besenbruch, L. C. Brown, D. R. O’Keefe and C. L. Allen, Report, General Atomics Corp (1982).

  16. L. C. Brown, G. E. Besenbruch, R. D. Lentsch, K. R. Shultz, J. F. Funk, P. S. Pickard, A. C. Marshall and S. K. Showalter, Report, General Atomics Corp (2020).

  17. Y. K. Shin, K. Lee, Y. Kim, J. Chang, W. Cho and K. Bae, Int. J. Hydrogen Energy, 37, 16604 (2012).

    Article  CAS  Google Scholar 

  18. S. Kasahara, J. Iwatuski, H. Takegami, N. Tanaka, H. Noguchi, Y. Kamiji, K. Onuki and S. Kubo, Int. J. Hydrogen Energy, 42, 13477 (2017).

    Article  CAS  Google Scholar 

  19. D. G. Rodriguez, C. A. B. D. Lira, L. R. G. Parra, C. R. G. Hernandez and R. D. Valdes, Energy, 147, 1165 (2018).

    Article  CAS  Google Scholar 

  20. Z. Ping, W. Laijun, C. Songzhe and X. Jingming, Renew. Sustain. Energy Rev., 81, 1802 (2018).

    Article  Google Scholar 

  21. J. Park, K. Nam, S. Heo, J. Lee, I. B. Lee and C. K. Yoo, Korean Chem. Eng. Res., 58, 235 (2020).

    CAS  Google Scholar 

  22. J. Park, S. Lee and I. Lee, J. Chem. Eng. Jpn., 52, 638 (2019).

    Article  CAS  Google Scholar 

  23. A. Giaconia, G. Caputo, A. Ceroli, M. Diamanti, V. Barbossa, P. Tarquini and S. Sau, Int. J. Hydrogen Energy, 32, 532 (2007).

    Google Scholar 

  24. B. J. Lee, H. C. No, H. J. Yoon, S. J. Kim and E. S. Kim, Int. J. Hydrogen Energy, 33, 2200 (2008).

    Article  CAS  Google Scholar 

  25. S. R. Sapute, J. Park and S. T. Revankar, Adv. Chem. Eng. Res., 4, 1 (2015).

    Article  Google Scholar 

  26. M. Sakurai, H. Nakajima, K. Onuki and S. Shimizu, Int. J. Hydrogen Energy, 25, 206 (2000).

    Google Scholar 

  27. J. E. Murphy and J. P. O’Connell, Int. J. Hdyrogen Energy, 37, 4002 (2012).

    Article  CAS  Google Scholar 

  28. V. Immanuel and A. Sakula, Int. J. Hydrogen Energy, 37, 4829 (2012).

    Article  CAS  Google Scholar 

  29. R. Liberatore, M. Lanchi, G. Caputo, C. Felici, A. Gianoia, S. Sau and P. Tarquini, Int. J. Hydrgoen Energy, 37, 8939 (2012).

    Article  CAS  Google Scholar 

  30. J. Park, P. Ifaei, A. H. Ba Alwai, U. Safder and C. K. Yoo, Int. J. Hydrogen Energy, 45, 14578 (2020).

    Article  CAS  Google Scholar 

  31. A. Rong and R. Lahdelma, Renew. Sustain. Energy Rev., 53, 363 (2016).

    Article  Google Scholar 

  32. P. Ifaei, U. Safder and C. K. Yoo, Energy Convers. Manage., 197, 111851 (2019).

    Article  CAS  Google Scholar 

  33. D. A. Crowl and J. F. Louvar, Chemical process safety fundamentals and applications, Prentice Hall, New York (2011).

    Google Scholar 

  34. P. Ifaei, J. Rashidi, and C. K. Yoo, Energy Convers. Manage., 123, 610 (2016).

    Article  Google Scholar 

  35. I. Dincer and M. A. Rosen, Exergy: energy, environment and sustainable development, Newnes (2012).

  36. S. Kim, J. Guo, K. I. Ahn and J. C. Lee, American Nucl. Soc., 117, 951 (2017).

    Google Scholar 

  37. J. E. Murphy and J. P. O’Connell, Fluid Phase Equilia, 288, 99 (2010).

    Article  CAS  Google Scholar 

  38. A. Tripodi, M. Compagoni, E. Bahadori and I. Rossetti, J. Ind. Eng. Chem., 66, 176 (2018).

    Article  CAS  Google Scholar 

  39. N. R. Brown, S. Oh, S. T. Revankar, K. Vierow, S. Rodriguez, R. Cole Jr. and R. Gauntt, Nucl. Technol., 167, 95 (2009).

    Article  CAS  Google Scholar 

  40. J. Rashidi and C. K. Yoo, Energy, 155, 504 (2018).

    Article  CAS  Google Scholar 

  41. S. Dehghani and H. Sayyaadi, Int. J. Hydrogen Energy, 38, 9074 (2013).

    Article  CAS  Google Scholar 

  42. F. Yilmaz and R. Selbas, Energy, 140, 520 (2017).

    Article  CAS  Google Scholar 

  43. R. Smith, Chemical process design and integration, John Wiley & Sons (2005).

  44. S. Kim and J. C. Lee, Annals of Nuclear Energy, 139, 107248 (2020).

    Article  CAS  Google Scholar 

  45. R. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz and D. Bhattacharyya, Pearson (2013).

  46. Y. I. Kim, National Health Insurance Statistical Year book, NHIS (2018).

  47. SINTEF Industrial Management, Offshore Reliability Data Handbook, Norway (2002).

  48. M. Shariff, A. M. Shariff, A. Buang, M. S. Shaikh and M. I. Khan, Chem. Eng. Technol., 42, 524 (2019).

    Article  Google Scholar 

  49. S. Mannan, Lees’ loss prevention in the process industries: hazard identification, assessment, and control, Elsevier (2012).

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP: Ministry of Science, ICT and Future Planning) (No. NRF-2019 M2A7A1001811).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JunKyu Park or Wooyong Um.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Jeon, J. & Um, W. Economic-energy-exergy-risk (3ER) assessment of novel integrated ammonia synthesis process and modified sulfur-iodine cycle for co-production of ammonia and sulfuric acid. Korean J. Chem. Eng. 38, 2381–2396 (2021). https://doi.org/10.1007/s11814-021-0896-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0896-z

Keywords

Navigation