Skip to main content
Log in

Preparation of polyethylene terephthalate foams at different saturation temperatures using dual methods of supercritical batch foaming

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Polyethylene terephthalate (PET) foams were prepared at different saturation temperatures using two supercritical foaming methods. The average cell size, cell number density, and porosity of PET foams obtained using each foaming method were compared. The crystallinity of the PET samples after the saturation step in the two-step foaming process was measured to observe the CO2-induced crystallization. The crystallinity of PET according to the saturation temperature led to a variation in cell size in the two-step foaming. In contrast, the melting of crystals with the increase in the temperature affected the cell number density of the polymeric foam prepared by one-step foaming method. The influence of the PET crystals on the cell nucleation or cell growth in each foaming method was studied from these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Sorrentino, E. Di Maio and S. Iannace, J. Appl. Polym. Sci., 116, 27 (2010).

    Article  CAS  Google Scholar 

  2. R. Guan, B. Wang, D. Lu, Q. Fang and B. Xiang, J. Appl. Polym. Sci., 93, 1698 (2004).

    Article  CAS  Google Scholar 

  3. C. C. Lai, C. T. Yu, F. M. Wang, H. T. Hsiao, W. C. Liang, Y. H. Ho, W. F. Teng, L. C. Liu and C. M. Chen, Polym. Test., 74, 1 (2019).

    Article  CAS  Google Scholar 

  4. M. Bedell, M. Brown, A. Kiziltas, D. Mielewski, S. Mukerjee and R. Tabor, Waste Manag., 71, 97 (2018).

    Article  CAS  Google Scholar 

  5. M. Xanthos, U. Yilmazer, S. K. Dey and J. Quintans, Polym. Eng. Sci., 40, 554 (2000).

    Article  CAS  Google Scholar 

  6. H. Guo, K. Nadella and V. Kumar, J. Mater. Res., 28, 2374 (2013).

    Article  CAS  Google Scholar 

  7. D. E. Kwon, B. K. Park and Y. W. Lee, Polymers (Basel), 11, 291 (2019).

    Article  Google Scholar 

  8. J. Ni, K. Yu, H. Zhou, J. Mi, S. Chen and X. Wang, J. Supercrit. Fluids, 158, 104719 (2020).

    Article  CAS  Google Scholar 

  9. S. Yao, D. Hu, Z. Xi, T. Liu, Z. Xu and L. Zhao, Polym. Test., 90, 106649 (2020).

    Article  CAS  Google Scholar 

  10. V. Kumar, R. P. Juntunen and C. Barlow, Cell. Polym., 19, 25 (2000).

    CAS  Google Scholar 

  11. J. S. Chiou, J. W. Barlow and D. R. Paul, J. Appl. Polym. Sci., 30, 3911 (1985).

    Article  CAS  Google Scholar 

  12. M. T. Liang and C. M. Wang, Ind. Eng. Chem. Res., 39, 4622 (2000).

    Article  CAS  Google Scholar 

  13. D. Li, T. Liu, L. Zhao and W. Yuan, AIChE J., 58, 2512 (2012).

    Article  CAS  Google Scholar 

  14. T. Xia, Z. Xi, T. Liu and L. Zhao, Chem. Eng. Sci., 168, 124 (2017).

    Article  CAS  Google Scholar 

  15. E. W. Lemmon, M. O. McLinden and D. G. Friend, Thermophysical Properties of Fluid Systems in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P. J. Linstrom and W. G. Mallard, National Institute of Standards and Technology, Gaithersburg (2021).

  16. A. Mehta, U. Gaur and B. Wunderlich, J. Polym. Sci. Polym. Phys. Ed., 16, 289 (1978).

    Article  CAS  Google Scholar 

  17. A. Jomekian, B. Bazooyar, S. J. Poormohammadian and P. Darvishi, Korean J. Chem. Eng., 36, 2047 (2019).

    Article  CAS  Google Scholar 

  18. Y. Yang, X. Li, Q. Zhang, C. Xia, C. Chen, X. Chen and P. Yu, J. Supercrit. Fluids, 145, 122 (2019).

    Article  CAS  Google Scholar 

  19. D. F. Baldwin, C. B. Park and N. P. Suh, Polym. Eng. Sci., 36, 1437 (1996).

    Article  CAS  Google Scholar 

  20. A. Kumar, B. Patham, S. Mohanty and S. K. Nayak, J. Polym. Res., 26, 80 (2019).

    Article  Google Scholar 

  21. E. Di Maio and E. Kiran, J. Supercrit. Fluids, 134, 157 (2018).

    Article  CAS  Google Scholar 

  22. H. Guo and V. Kumar, Polymer (Guildf), 57, 157 (2015).

    Article  CAS  Google Scholar 

  23. T. J. Yoon, W. Kong, D. E. Kwon, B. K. Park, W. I. Lee and Y. W. Lee, J. Supercrit. Fluids, 124, 30 (2017).

    Article  CAS  Google Scholar 

  24. R. Li, J. H. Lee, C. Wang, L. Howe Mark and C. B. Park, J. Supercrit. Fluids, 154, 104623 (2019).

    Article  CAS  Google Scholar 

  25. Y. K. Kwon and H. K. Bae, Korean J. Chem. Eng., 24, 127 (2007).

    Article  CAS  Google Scholar 

  26. V. Kumar and J. E. Weller, Int. Polym. Process., 8, 73 (2013).

    Article  Google Scholar 

  27. I. K. Hong and S. Lee, Korean J. Chem. Eng., 31, 166 (2014).

    Article  CAS  Google Scholar 

  28. J. Hou, G. Zhao, G. Wang, L. Zhang, G. Dong and B. Li, J. Supercrit. Fluids, 145, 140 (2019).

    Article  CAS  Google Scholar 

  29. Y. W. Chang, S. Kim, S. C. Kang and S. Y. Bae, Korean J. Chem. Eng., 28, 1779 (2011).

    Article  CAS  Google Scholar 

  30. C. Jiang, S. Han, S. Chen, H. Zhou and X. Wang, Cell. Polym., 39, 223 (2020).

    Article  CAS  Google Scholar 

  31. M. Nofar, E. Büşra Küçük and B. Bati, J. Supercrit. Fluids, 153, (2019).

  32. A. M. Hindeleh and D. J. Johnson, Polymer (Guildf), 19, 27 (1978).

    Article  CAS  Google Scholar 

  33. Y. Srithep and L. S. Turng, J. Polym. Eng., 34, 5 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Institute of Engineering Research at Seoul National University and Grant (NRF-2018R1A2 B2008196) from National Research Foundation of Korea funded by Ministry of Science and ICT of Korea government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byung Kyu Park or Youn-Woo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, D.E., Aregay, M.G., Park, B.K. et al. Preparation of polyethylene terephthalate foams at different saturation temperatures using dual methods of supercritical batch foaming. Korean J. Chem. Eng. 38, 2560–2566 (2021). https://doi.org/10.1007/s11814-021-0889-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0889-y

Keywords

Navigation