Skip to main content
Log in

Modified grafted nano cellulose based bio-sorbent for uranium (VI) adsorption with kinetics modeling and thermodynamics

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hybrid grafted nano cellulose was prepared in the existence of glycidyl methacrylate and functionalized by an amine group. Amine-modified grafted nano cellulose and its adsorption behavior were studied using a batch technology to an aqueous uranium solution, where the equilibrium and maximum uptake capacities were carried out at room temperature within 1 h at pH 5. Characterization of the modified cellulose occurred utilizing FTIR, TGA, and TEM. Whereas theoretical characterization was applied to demonstrate the process of multicomponent mass transfer into the new functional grafted nano cellulose sorbent by MATLAB using several mathematical models like Freundlich, Langmuir, Redlich-Peterson, and Brunauer-Emmett-Teller for describing the equilibrium data of the uranium (VI) ions adsorption process. As the bridge between physics and chemistry, the thermodynamic parameters and kinetic parameters were calculated to describe the nature of the sorption process and the type of interaction, respectively. The reaction was followed a pseudo-second order (two parallel pseudo-first orders) model by relatively fast kinetics mixed between chemical and solid diffusion-controlled reactions manner. Finally, uranium (VI) ions sorption process exhibited an endothermic and spontaneous process in (2D) and (3D).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Rozmaric, A. G. Ivsic and Z. Grahek, Talanta, 80, 352 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. J. Lia and Y. Zhang, Procedia Environ. Sci., 13, 1609 (2012).

    Article  Google Scholar 

  3. A. Mellah, S. Chegrouche and M. Barkat, Hydrometallurgy, 85(2–4), 163 (2007).

    Article  CAS  Google Scholar 

  4. Y. K. Agrawl, P. Shrivatav and S. K. Mnom, Sep. Purif. Technol., 20, 177 (2000).

    Article  Google Scholar 

  5. M. R. Yaftian, R. Taheri, A. A. Zamani and D. Matt, J. Radioanal. Chem., 262(2), 455 (2004).

    Article  CAS  Google Scholar 

  6. F. A. Aydin and M. Soyla, Talanta, 73, 134 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. M. L. Dietz, H. E. Philip, L. R. Sajdak and R. Chiarizia, Talanta, 54, 1173 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. B. Gu, Y. Ku and G. M. Brown, Environ. Sci. Technol., 39(3), 901 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. A. M. Yousif, A. H. El-Afandy, G. M. A. Wahab, A. E. Mubark and I. A. Ibrahim, J. Radioanal. Nucl. Chem., 303(3), 1821 (2015).

    CAS  Google Scholar 

  10. A. Mellah, A. Silem, A. Boualia and R. Kada, Chem. Eng. Process, 31(3), 191 (1992).

    Article  CAS  Google Scholar 

  11. M. Saleem, M. Afzal, R. Qadeer and J. Hanif, Sep. Sci. Technol., 27, 239 (1992).

    Article  CAS  Google Scholar 

  12. L. Kong and H. Adidharma, Chem. Eng. J., 375, 122112 (2019).

    Article  CAS  Google Scholar 

  13. F. A. Abu AL-Rub, M. Kandah and N. AL-Dabaybeh, Sep. Sci. Technol., 38, 463 (2003).

    Article  Google Scholar 

  14. A. Saeed, M. Iqbal and M. W. Akhtar, J. Hazard. Mater., 117, 65 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. R. Gong, Y. D. Ding, H. Liu, Q. Chen and Z. Liu, Chemosphere, 58, 125 (2002).

    Article  Google Scholar 

  16. F. A. Abu AL-Rub, M. H. EL-Naas, F. Benyahia and I. Ashour, Process Biochem., 39, 1767 (2004).

    Article  CAS  Google Scholar 

  17. T. Davis, B. Volesky and A. Mucci, Water Res., 37, 4311 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. D. Schmitt, A. Muller, Z. Csoger, F. H. Frimmel and C. Posten, Water Res., 35, 779 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Z. R. Holan and B. Volesky, Appl. Biochem. Biotechnol., 53, 133 (1995).

    Article  CAS  Google Scholar 

  20. A. M. Yousif, S. A. Labiba, I. A. Ibrahim and A. A. Atia, Sep. Sci. Technol., 54(8), 1257 (2019).

    Article  CAS  Google Scholar 

  21. R. E. Abouzeid, R. Khiari, N. El-Wakil and A. Dufresne, Biomacromolecules, 20, 573e597 (2019).

    Article  Google Scholar 

  22. S. Hokkanena, A. Bhatnagar and M. Sillanpää, Water Res., 91, 156e173 (2016).

    Google Scholar 

  23. P. Gemeiner, M. Polakovic, D. Mislovicova and V. Stefuca, J. Chromatogr., B, 715, 245 (1998).

    Article  CAS  Google Scholar 

  24. A. Yan, S. Haijia and T. Tianwei, Korean J. Chem. Eng., 24(6), 1047 (2007).

    Article  CAS  Google Scholar 

  25. Z. Shiri-Yekta, M. R. Yaftian and A. Nilchi, Korean J. Chem. Eng., 30(8), 1644 (2013).

    Article  CAS  Google Scholar 

  26. M. A. A. Shahmirzadi, S. S. Hosseini and N. R. Tan, Korean J. Chem. Eng., 33(12), 3529 (2016).

    Article  CAS  Google Scholar 

  27. S. A. Sadeek, M. O. Abd El-Magid, M. A. El-Sayed and M. M. Amin, J. Environ. Chem. Eng., 2, 293 (2014).

    Article  CAS  Google Scholar 

  28. Y. Chang, J. Y. Lai and D. J. Lee, Bioresour. Technol., 222, 513 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. M. N. Sahmoune, Environ. Chem. Lett., 697–704 (2019).

  30. J. J. Kelly, ReviewThermodynamics.nb (1996–2002).

  31. O. Aksakal and H. Ucun, J. Hazard. Mater., 181, 666 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. J. Höller, P. Bickert, P. Schwartz, M. von Kurnatowski, J. Kerber, N. Künzle, H. M. Lorenz, N. Asprion, S. Blagov and M. Bortz, ChemEngineering, 3(2), 56 (2019).

    Article  Google Scholar 

  33. T. S. Anirudhan, S. Jalajamony and L. Divya, Ind. Eng. Chem. Res., 48, 2118 (2009).

    Article  CAS  Google Scholar 

  34. A. A. Atia, A. M. Donia, S. A. Abou-El-Eniein and A. M. Yousif, Sep. Purif. Technol., 33, 295 (2003).

    Article  CAS  Google Scholar 

  35. Y. U. Jing, J. Wang and Y. Jiang, Nuc. Eng. Technol., 49, 534 (2017).

    Article  Google Scholar 

  36. L. Zhou, C. Shang, Z. Liu, G. Huang and A. Adesina, J. Colloid Interface Sci., 366, 165 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. A. E. Mubark, Extraction of uranium and vanadium from aqueous solutions using chelating resins, M.Sc. Thesis, Menoufia University, Egypt (2015).

    Google Scholar 

  38. V. J. Inglezakis and S. G. Poulopoulos, Adsorption, Ion Exchange and Catalysis, Elsevier B. V. (2006).

  39. E. A. Gawad, J. Basic, Environ. Sci., 7, 213 (2020).

    Google Scholar 

  40. E. A. Gawad, Nucl. Sci. Scient. J., 8, 213 (2019).

    Google Scholar 

  41. O. Levenspiel, Chemical reaction engineering, 3rd Eds., John Wiley & Sons, New York, 41–47 (1999).

    Google Scholar 

  42. Y. L. Hwang and G. G. Helfferich, React. Polym., 5, 237 (1987).

    CAS  Google Scholar 

  43. E. A. Gawad, MSAIJ, 13, 308 (2015).

    CAS  Google Scholar 

  44. S. Amorim, M. D. Domenicoa, T. L. P. Dantasb, H. J. Joséa and R. F. P. M. Moreira, Chem. Eng. J., 283, 388 (2016).

    Article  CAS  Google Scholar 

  45. I. Langmuir, J. Am. Chem. Soc., 38(11), 2221 (1916).

    Article  CAS  Google Scholar 

  46. K. Foo and B. Hameed, Chem. Eng. J., 156(1), 2 (2010).

    Article  CAS  Google Scholar 

  47. K. R. Hall, L. C. Eagleton, A. Acrivos and T. Vermeulen, Ind. Eng. Chem. Fundam., 5(2), 212 (1966).

    Article  CAS  Google Scholar 

  48. S. M. Hasany, M. M. Saeed and M. Ahmed, J. Radioanal. Nucl. Chem., 252, 477 (2002).

    Article  CAS  Google Scholar 

  49. L. Jossens, J. M. Prausnitz, W. Fritz, E. U. Schlünder and A. L. Myers, Chem. Eng. Sci., 33, 1097 (1978).

    Article  CAS  Google Scholar 

  50. K. Charles and K. Herbert, Thermal physics, 2nd Eds., W. H. Freeman and Company, USA (1980).

    Google Scholar 

  51. A. A. Eliwa, E. A. Gawad, A. E. Mubark and N. A. A. Fattah, JOM (2021).

  52. S. Ullah, M. Bustam, M. Assiri, A. Al-Sehemi, G. Gonfa and A. Mukhtar, Micropor. Mesopor. Mater., 294, 109844 (2020).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilly Ahmed Kawady.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawady, N.A., Gawad, E.A.E. & Mubark, A.E. Modified grafted nano cellulose based bio-sorbent for uranium (VI) adsorption with kinetics modeling and thermodynamics. Korean J. Chem. Eng. 39, 408–422 (2022). https://doi.org/10.1007/s11814-021-0886-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0886-1

Keywords

Navigation