Skip to main content
Log in

Influence of flow-induced oscillating disturbance on the surface heat transfer of impingement flow

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Flow-induced oscillation is an effective way to enhance heat transfer, which requires no extra energy consumption and can prevent fouling and soot formation. To test the flow-induced oscillation effect on the heat transfer of impingement flow, an 18 mm wide and 30 µm thick membrane tape was mounted at the exit of the ejection pipe. As the ejection Reynolds number increased from 5280 to 9827, the oscillating frequency also increased. In addition, three different oscillating regimes were observed, these being quasi-still, 2D-oscillating and 3D-oscillating, with the transition Re depending on the tape length. The heating plate was 3D-printed and electrical heating wires were embedded within it so as to predetermine the local heat flux by numerical analysis, and be able to calculate the heat transfer coefficient (HTC). The results demonstrate that heat transfer enhancement is more prominent in the vertical direction to the tape than in the parallel direction. Moreover, the distinctive heat transfer enhancement effect near the plate center becomes weaker as it goes toward the outside of the plate, and even turns negative with an increasing r/D. Using a longer piece of tape or having smaller intervals between the tape tip and plate was also shown to improve the heat transfer effect. The spontaneous oscillating disturbance method shows great promise for heat transfer regulation in impingement flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sadeghianjahromi and C.-C. Wang, Renew. Sust. Energ. Rev., 137, 110470 (2021).

    Article  CAS  Google Scholar 

  2. R. L. Webb, Principle of enhanced heat transfer, Wiley, New York (1994).

    Google Scholar 

  3. S. Ghanami and M. Farhadi, Protein Sci., 7(1), 9 (2019).

    Google Scholar 

  4. R. Hassan, P Roy Soc Lond A Mat, 277(1368), 51 (1964).

    Article  Google Scholar 

  5. P. R. Owen, J. Mech. Eng. Sci., 7(4), 431 (1965).

    Article  Google Scholar 

  6. K. Lam, G. D. Jiang, Y. Liu and R. So, Int. J. Numer Methods Fluids, 46(3), 289 (2004).

    Article  Google Scholar 

  7. N. Zhang, Adv. Mat. Res., 542–543, 66 (2012).

    Google Scholar 

  8. D. Duan, P. Ge and W. Bi, Energy Convers. Manag., 103, 859 (2015).

    Article  Google Scholar 

  9. K. A. R. Medeiros, F. L. A. de Oliveira, C. R. H. Barbosa and E. C. de Oliveira, Measurement, 91, 576 (2016).

    Article  Google Scholar 

  10. O. O. Ajayi, M. C. Agarana and T. O. Animasaun, Procedia Manuf., 7, 602 (2017).

    Article  Google Scholar 

  11. L. Cheng, T. Luan, W. Du and M. Xu, Int. J. Heat Mass Transf., 52(3), 1053 (2009).

    Article  CAS  Google Scholar 

  12. M. H. Mousa, N. Miljkovic and K. Nawaz, Renew. Sust. Energ. Rev., 137, 110566 (2021).

    Article  Google Scholar 

  13. P. Hidalgo, F. Herrault, A. Glezer, M. Allen and B. S. Rock, Thermal Investigations of ICs and Systems (THERMINIC), 2010 16th International Workshop on (2010).

  14. F. Herrault, P. A. Hidalgo, C. Ji, A. Glezer and M. G. Allen, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 1217 (2012).

  15. J. Ryu, S. G. Park, B. Kim and H. J. Sung, J. Fluids Struct, 57, 159 (2015).

    Article  Google Scholar 

  16. G. Krishan, K. C. Aw and R. N. Sharma, Appl. Therm. Eng., 149, 1305 (2018).

    Article  Google Scholar 

  17. L. Yong and M. C. Xiao, Eur. J. Mech. B Fluids, 57, 40 (2016).

    Article  Google Scholar 

  18. L. Agricola, R. Prenter, R. Lundgreen, M. Hossainf and J. Bons, 53rd AIAA/SAE/ASEE Joint Propulsion Conference (2017).

  19. T. Park, K. Kara and D. Kim, Int. J. Heat Mass Transf., 124, 920 (2018).

    Article  Google Scholar 

  20. M. Germano, U. Piomelli, P. Moin and W. H. Cabot, Phys. Fluids A, 3(7), 1760 (1991).

    Article  Google Scholar 

  21. P. Chorin, F. Moreau and D. Saury, Int. J. Therm. Sci., 161, 106711 (2020).

    Article  Google Scholar 

  22. M. Holger, Adv. Heat Transf., 13, 1 (1977).

    Article  Google Scholar 

  23. C. Camci and F. Herr, Int. J. Heat Mass Transf., 124(4), 770 (2002).

    Google Scholar 

  24. M. A. Hossain, L. Agricola, A. Ameri, J. W. Gregory and J. P. Bons, 2018 AIAA Aerospace Sciences Meeting (2018).

Download references

Acknowledgements

The authors would like to extend their sincere gratitude to National Natural Science Foundation of China (51806128 and 51879154), Natural Science Foundation of Shandong Province (ZR2019BEE008 and ZR2019MEE007) and China Postdoctoral Science Foundation (2020M682211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoni Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, X., Qi, X., Guo, Q. et al. Influence of flow-induced oscillating disturbance on the surface heat transfer of impingement flow. Korean J. Chem. Eng. 38, 2217–2228 (2021). https://doi.org/10.1007/s11814-021-0879-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0879-0

Keywords

Navigation