Skip to main content
Log in

Studies on synthesis of lactic acid and xanthan gum from cheese whey permeate in two phase and three phase moving bed biofilm reactors

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The performance characteristics of moving-bed biofilm reactors (MBBRs) have been analyzed both mathematically and experimentally. Both two phase operation (lactic acid synthesis from cheese-whey permeate) and three phase operation (Xanthan gum production) in both batch and continuous flow reactors have been studied. Mathematical simulation was performed considering the heterogeneous nature of the system with appropriately defined effectiveness factor being incorporated to account for resistance to substrate transfer into biofilm. The flow reactors were modeled based on the tanks-in-series approach. The mathematical models (software packages) developed were adequately verified by comparing with experimental data. The interesting performance features of these reactors have been highlighted and the dependence of reactor performance on key system/operating parameters such as batch time/space time, catalyst loading and catalyst size has been well-illustrated. The limitation that these bioreactors are best suited mainly for small capacity installations has also been indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Material

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors also have no financial or proprietary interests in any material discussed in this article.

Abbreviations

C S :

substrate concentration in liquid [g L−1]

C Se :

substrate concentration in product solution [g L−1]

C S0 :

substrate concentration in feed solution [g L−1]

dP :

diameter of support particle [m]

dPm :

diameter of particle-biofilm aggregate [m]

D:

diameter of reactor vessel [m]

Da :

diameter of impeller [m]

De :

effective diffusivity of substrate into biofilm [m2s−1]

f:

volume fraction of biofilm in particle-biofilm aggregate [m2 m−3]

KC :

contois kinetic constant, dimensionless

KS :

monod kinetic constant [g L−1]

L*:

characteristic dimension of particle-biofilm aggregate [m]

n:

speed of impeller [s−1]

PgL :

agitator power consumption for a gassed liquid [J s−1]

PgLS :

agitator power consumption for three phase (gas-liquid-solid) system [J s−1]

PL :

agitator power consumption for an ungassed liquid [J s−1]

Qg :

volume flow rate of gas (air) [m3s−1]

Qo :

volume flow rate of feed solution [m3s−1]

(− rs)(int):

intrinsic rate of bioconversion [g L−1 s−1]

Rem :

mixing Reynolds number, dimensionless

Ug :

average superficial velocity of gas [m s−1]

V:

V reactor volume [m3]

x:

cell mass concentration [g L−1]

Xf :

biomass (cell mass) concentration in biofilm [g L−1]

X:

mass fraction of solids (particle — biofilm aggregates) in the reaction mixture

Y:

overall yield coefficient for cell mass production [g g−1]

α :

fractional conversion of substrate, dimensionless

β :

parameter defined in Eq. (14) and in Eq. (33), dimensionless

δ :

biofilm thickness [m]

ε :

volume fraction of particle — biofilm aggregates in the reaction mixture, dimensionless

ε g :

fractional gas holdup in reaction mixture, dimensionless

η :

effectiveness factor, dimensionless

μ L :

liquid viscosity [kg m−1s−1]

μ m :

maximum specific growth rate [s−1]

ρ L :

liquid density[kg m−3]

ρ m :

density of microbial solution [kg m−3]

ρ s :

density of support particle [kg m−3]

ρS m :

density of particle — biofilm aggregate [kg m−3]

τ :

space time; batch time [s]

Ø:

Thiele-type modulus, dimensionless

References

  1. H. Ødegaard, Water Sci. Technol., 42, 33 (2000).

    Article  Google Scholar 

  2. J. P. Mcquarrie and J. P. Boltz, Water Environ. Res., 83, 560 (2011).

    Article  CAS  Google Scholar 

  3. B. Rusten, E. Mattsson, A. B. Due and T. Westrum, Water Sci. Technol., 30, 161 (1994).

    Article  CAS  Google Scholar 

  4. L. J. Hem, B. Rusten and H. Ødegaard, Water Res., 28, 1425 (1994).

    Article  CAS  Google Scholar 

  5. B. Rusten, L. J. Hem and H. Ødegaard, Water Environ. Res., 67, 75 (1995).

    Article  CAS  Google Scholar 

  6. M. Maurer, C. Fux, M. Graff and H. Siegrist, Water Sci. Technol., 43, 337 (2001).

    Article  CAS  Google Scholar 

  7. B. Rusten, L. J. Hem and H. Ødegaard, Water Environ. Res., 67, 65 (1995).

    Article  CAS  Google Scholar 

  8. B. Szatkowska, G. Cema, E. Plaza, J. Trela and B. Hultman, Water Sci. Technol., 55, 19 (2007).

    Article  CAS  Google Scholar 

  9. M. Kermani, B. Bina, H. Movahedian, M. M. Amin and M. Nikaein, Am. J. Environ. Sci., 4, 675 (2008).

    Article  CAS  Google Scholar 

  10. M. Kermani, B. Bina, H. Movahedian, M. M. Amin and M. Nikaein, Iranian J. Biotech., 7, 18 (2009).

    Google Scholar 

  11. S. Chen, D. Z. Sun and J. S. Chung, Waste Manage., 28, 339 (2008).

    Article  CAS  Google Scholar 

  12. B. P. Sahariah, J. Anandkumar and S. Chakraborty, Desalin. Water Treat., 57, 14396 (2016).

    Article  CAS  Google Scholar 

  13. J. Anandkumar, A. Yadu and B. P. Sahariah, J. Mod. Chem. Chem. Technol., 7, 37 (2016).

    Google Scholar 

  14. C. M. Narayanan, Int. J. Chem. Eng. Proc., 1, 1 (2015).

    Google Scholar 

  15. C. M. Narayanan and S. Das, Adv. Chem. Eng. Sci., 6, 130 (2016).

    Article  CAS  Google Scholar 

  16. C. M. Narayanan and S. Das, Int. J. Environ. Waste Manage., 19, 1 (2017).

    Article  CAS  Google Scholar 

  17. A. Pandey and C. M. Narayanan, Int. J. Trans. Phenom., 14, 241 (2017).

    Google Scholar 

  18. C. M. Narayanan, S. Das and A. Pandey, in Handbook of food bioengineering — Volume 2, A. M. Grumezescu and A. M. Holban Eds, Academic Press, London (2017).

  19. C. M. Narayanan, Chem. Prod. Process Model., 10, 55 (2015).

    Article  CAS  Google Scholar 

  20. A. W. Schepers, J. Thibault and C. Lacroix, Enzyme Microbial Tech., 30, 176 (2002).

    Article  Google Scholar 

  21. J. C. Gottifredi and E. E. Gonzo, Chem. Eng. J., 109, 83 (2005).

    Article  CAS  Google Scholar 

  22. N. Dohi, Y. Matsuda, N. Itano, K. Shimizu, K. Minekawa and Y. Kawase, Chem. Eng. Commun., 171, 211 (1999).

    Article  CAS  Google Scholar 

  23. Y. Bao, Z. Hao, Z. Gao, L. Shi, J. M. Smith and R. B. Thorpe, Chem. Eng. Commun., 193, 801 (2006).

    Article  CAS  Google Scholar 

  24. A. K. Rapala and J. Karcz, Chem. Papers, 64, 154 (2010).

    Google Scholar 

  25. A. K. Rapala and J. Karcz, Chem. Papers, 66, 574 (2012).

    Google Scholar 

  26. M. M. Godlewska and J. Karcz, Chem. Papers, 66, 566 (2012).

    Google Scholar 

  27. A. J. Patrick and M. J. Kennedy, Biotech. Lett., 17, 487 (1995).

    Article  CAS  Google Scholar 

  28. G. L. Zabot, J. Mecca and M. Mesomo, Bioprocess Biosyst. Eng., 34, 975 (2011).

    Article  CAS  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose. No funding has been received from any registered agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Narayanan.

Ethics declarations

The authors have no conflict of interest to declare relevant to the contents of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, C.M., Narayan, V. Studies on synthesis of lactic acid and xanthan gum from cheese whey permeate in two phase and three phase moving bed biofilm reactors. Korean J. Chem. Eng. 38, 1888–1902 (2021). https://doi.org/10.1007/s11814-021-0821-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0821-5

Keywords

Navigation