Skip to main content

A comprehensive numerical design of firefighting systems for onshore petroleum installations

Abstract

Petroleum facilities containing welded steel bulk flammable liquid product storage tanks possess sundry fire hazards inherent to the facility. These installations urgently require indigenous efficient firefighting systems. So, the efficient design of firewater and firefighting foam system is dynamic in controlling fire-related emergencies. The paper deals with the in-depth conceptualization of the design and analysis of firefighting systems for a typical petroleum handling, processing and storage facility in compliance with international standards. The study is aimed to formulate the elementary technique for designing an optimized firefighting system. The proposed objective was achieved by considering an ideal tank farm site that is most commonly located in a range of terminal stations, pumping stations, petroleum refineries, well sites, etc. Sufficient illumination was enumerated on the standardized classification of the liquid fuel product with respect their flammability range. Special guidelines regarding firefighting system design basis were defined and an optimized firefighting and foam system design was developed. Moreover, sufficient limitations that must be considered during the firefighting of huge tank fires are discussed. This comprehensive numerical design philosophy offers a simple and wide-ranging guide to industrial practitioners by formulating the principles for industrial firefighting system design.

References

  1. M. Elhelw, A. El-Shobaky, A. Attia and W. M. El-Maghlany, Process Saf. Environ. Prot., 146, 670 (2021).

    CAS  Article  Google Scholar 

  2. J. I. Chang and C.-C. Lin, J. Loss Prev. Process Ind., 19(1), 51 (2006).

    Article  Google Scholar 

  3. H. Persson and A. Lönnermark, Tank fires-Review of fire incidents 1951–2003, Digitala Vetenskapliga Arkivet, Uppsala, Sweden (2004).

    Google Scholar 

  4. I. M. Shaluf and S. A. Abdullah, J. Loss Prev. Process Ind., 24, 1 (2011).

    Article  Google Scholar 

  5. B. Zheng and G. H. Chen, Process Saf. Progr., 30(3), 29 (2011).

    Article  Google Scholar 

  6. A. Dutta, D. Das, R. K. Jana and X. Vinh Vo, Resour. Policy, 69, 101816 (2020).

    Article  Google Scholar 

  7. B. Oray Güngör, H. M. Ertugrul and U. Soytaş, Technol. Forecas. and Social Change, 166, 120637 (2021).

    Article  Google Scholar 

  8. B. Sun, K. Guo and V. K. Pareek, J. Loss Prev. Process Ind., 35, 200 (2015).

    Article  Google Scholar 

  9. M. E. M. Soudagar, N. R. Banapurmath, A. Afzal, N. Hossain, M. M. Abbas, M. A. C. M. Haniffa, B. Naik, W. Ahmed, S. Nizamuddin and N. M. Mubarak, Sci. Rep., 10, 108 (2020).

    Article  Google Scholar 

  10. H. Chowdhury, T. Chowdhury, N. Hossain, P. Chowdhury, B. Salam, S. M. Sait and T. M. I. Mahlia, Environ. Sci. Pollut. Res., 25, 12881 (2020).

    Google Scholar 

  11. H. Kim, J.-S. Koh, Y. Kim and T. G. Theofanous, Korean. J. Chem. Eng., 22, 8 (2005).

    Google Scholar 

  12. M. J. Hurley, SFPE handbook of fire protection engineering, Springer, New York (2015).

    Google Scholar 

  13. A. E. Cote, Fire protection handbook, 20th Edition, NFPA (2008).

  14. API RP 2001: Standard for fire protection in refineries, 10th Edition. (2012).

  15. OGRA Technical Standards for the Petroleum Industry (Depots for the Storage of Petroleum Products) (2009).

  16. IP19: Fire precautions at petroleum refineries and bulk storage installations (2012).

  17. IPS-E-SF-220: Engineering Standard for Fire Water Distribution and Storage Facilities, Iranian Petroleum Ministry (1993).

  18. Directorate, OISD, STD 116—Fire protection facilities for petroleum refineries and oil/gas processing plants, New Delhi: OISD (1999).

    Google Scholar 

  19. I. Alimohammadi, Iran J. Health Saf. Environ., 2(4), 385 (2015).

    Google Scholar 

  20. S. Parkash, Petroleum Fuels Manufacturing Handbook: including Specialty Products and Sustainable Manufacturing Techniques: including Specialty Products and Sustainable Manufacturing Techniques, McGraw Hill Professional (2009).

  21. C. S. Hsu and P. R. Robinson, Gasoline production and blending, in Springer handbook of petroleum technology, Springer, Switzerland (2017).

    Chapter  Google Scholar 

  22. A. M. Aitani, Encyclopedia of Energy, 4, 715 (2004).

    Article  Google Scholar 

  23. T. V. Rodante, Process Saf. Progr., 24(2), 98 (2005).

    CAS  Article  Google Scholar 

  24. NFPA 22: Standard for Water Tanks for Private Fire Protection (2018).

  25. T. J. Martin, Fire-fighting foam technology. in foam engineering. Fundamentals and applications, John Wiley & Sons, Inc., Chichester, West Sussex, U.K. (2012).

    Google Scholar 

  26. NFPA 30: Flammable and Combustible Liquids Code (2018).

  27. NFPA 15: Standard for Water Spray Fixed Systems for Fire Protection (2017).

  28. J. W. Lim, J. Loss Prev. Process Ind., 62, 103970 (2019).

    Article  Google Scholar 

  29. J. Glatz, M. Gorzás and M. Hovanec, Oil tank fire modelling for the purposes of emergency planning, in Production Management and Engineering Sciences, ROUTLEDGE in association with GSE Research (2016).

  30. I. Sutton, Plant design and operations, Oxford: Gulf Professional Publishing, Cambridge (2017).

    Google Scholar 

  31. API RP 2030: Application of fixed water spray systems for fire protection in the petroleum and petrochemical industries, 4th Edition (2014).

  32. K. A. Mansour, Fires in large atmospheric storage tanks and their effect on adjacent tanks, PhD Thesis (2012).

  33. NFPA 16: Standard for the Installation of Foam-Water Sprinkler and Foam-Water Spray Systems (2019).

  34. J. L. Scheffey, Foam agents and AFFF system design considerations, in SFPE Handbook of Fire Protection Engineering, Springer, New York (2016).

    Google Scholar 

  35. Q. Zhang, L. Wang, Y. Bi. D. Xu, H. Zhi and P. Qiu, J. Hazard. Mater., 287, 87 (2015).

    CAS  Article  Google Scholar 

  36. NFPA 11: Standard for Low-, Medium-, and High-Expansion Foam (2019).

  37. API 650: Welded steel tanks for oil storage, 13th Edition (2020).

  38. F. P. Xu-qing, L. Quan-Zhen and G. Hong, Procedia Eng., 11, 189 (2011).

    Article  Google Scholar 

  39. P. J. DiNenno, SFPE handbook of fire protection engineering, Society of Fire Protection Engineers, Bethesda (2008).

    Google Scholar 

  40. J. N. Adams, Chem. Eng. Prog., 93(12), 55 (1997).

    CAS  Google Scholar 

Download references

Acknowldegements

The support from the National Research Foundation of Korea under the project (NRF-2020R1I1A1A01072793) is gratefully acknowldeged. Also, this work was supported by the National Research Foundation of Korea (2019R1A4A1027795) for Young-Kwon Park.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Murid Hussain, Ashfaq Ahmed or Young-Kwon Park.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shafiq, I., Hussain, M., Shafique, S. et al. A comprehensive numerical design of firefighting systems for onshore petroleum installations. Korean J. Chem. Eng. 38, 1768–1780 (2021). https://doi.org/10.1007/s11814-021-0820-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0820-6

Keywords

  • Fire
  • Explosion
  • Firewater
  • Firefighting Foam
  • Design Philosophy
  • Petroleum Storage Tanks