Skip to main content

Advertisement

Log in

Comparison of carbon molecular sieve and zeolite 5A for CO2 sequestration from CH4/CO2 mixture gas using vacuum pressure swing adsorption

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The performance of carbon molecular sieves and zeolite 5A was compared in a four-bed vacuum pressure swing adsorption process. The purpose of the process is to sequester CO2 from a CH4/CO2 mixture gas, such as coal bed methane or landfill gas. This study investigated the effects of the design variables and operating variables on methane purity, recovery, and specific power through simulations of the process using the two adsorbents. The adopted design variables for the investigation are the packing bed length and the diameter of the adsorption bed, and the selected operating variables are the adsorption pressure and vacuum pressure. The simulation results show that zeolite 5A is better than carbon molecular sieve in terms of power, especially under low-pressure operating conditions with a vacuum pressure of 1,000 Pa. However, carbon molecular sieves are better in terms of purity enhancement when the vacuum pressure is higher than approximately 2,000 Pa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

cross sectional area within bed [m2]

Avoid :

void cross sectional area within bed [m2]

bi :

Langmuir constant [1/bar] as a function of temperature

bo, i :

Langmuir isotherm parameters [1/bar]

C:

total concentration [mol/m3]

Ci :

concentration of component i [mol/m3]

Cpg :

heat capacity of gas [J/(kg K)]

Cps :

heat capacity of adsorbent [J/(kg K)]

Cw :

heat capacity of bed wall [J/(kg K)]

CSScheck :

criterion variable for the CSS determination

D ax :

axial dispersion coefficient [m2/s]

DE, i :

isotherm parameters [K]

dp :

adsorbent particle diameter [m]

ΔHi :

isosteric heat of adsorption [J/mol]

hInside :

heat transfer coefficient of inside the bed [J/(m2 s K)]

hOutside :

heat transfer coefficient of outside the bed [J/(m2 s K)]

j:

1 when forward finite difference method (FFDM) or backward finite difference method (BFDM) is used for axial discretization; 2 when centered finite difference method (CFDM) is used for axial discretization

ki :

mass transfer coefficient of linear driving force (LDF) model of component i [1/s]

KL :

effective axial thermal conductivity [J/(m s K)]

Lbed :

packing bed length [m]

ṅ:

molar flow rate [mol/s]

feed :

feed gas molar flow rate [mol/s]

PG :

purge gas molar flow rate [mol/s]

prod :

product gas molar flow rate [mol/s]

Step(k) :

molar flow rate at step K [mol/s]

\({\rm{\dot n}}_{ave}^{Step\left( K \right)}\) :

average molar flow rate during step K [mol/s]

after split, ave :

average molar flow rate in product stream after splitting [mol/s]

nc:

number of component

ND :

number of discretization in finite difference method as to the bed axial domain

P:

total pressure [Pa]

Pi :

partial pressure [Pa]

PAD :

adsorption pressure [Pa]

PBD :

blowdown pressure [Pa]

PPG :

purge pressure [Pa]

PurityCH4 :

methane purity [%]

RecoveryCH4 :

methane recovery [%]

PowerComp,ave :

average compressor power [J/s]

PowerVP,ave :

average vacuum pump power [J/s]

PowerSP,ave :

total average specific power [J/(mol s)]

R:

universal gas constant [J/(mol K)]

qi :

adsorbed amount of component i [mol/kg]

\({\rm{q}}_i^*\) :

equilibrium amount adsorbed of component i [mol/kg]

qs :

equilibrium parameter for extended Langmuir isotherm [mol/kg]

qsa, i :

Langmuir isotherm parameters [mol/kg]

qsb, i :

Langmuir isotherm parameters [mol K/kg]

Rbed, inside :

inside radius of the bed [m]

Rbed, outside :

outside radius of the bed [m]

t AD :

adsorption operating step time [s]

\({\rm{t}}_{AD}^{Step\left( K \right)}\) :

operating time of step K (adsorption) [s]

t PG :

purge operating step time [s]

T:

gas temperature [K]

Twall :

bed wall temperature [K]

Tamb :

ambient temperature [K]

uI :

interstitial gas velocity [m/s]

yi :

mole fraction of component i

yfeed, i :

feed mole fraction of component i

\({\rm{y}}_i^{Step\left( K \right)}\) :

mole fraction of component i at step K

\({\rm{y}}_{i,\,\,ave}^{Step\left( K \right)}\) :

average mole fraction of component i at step K

z:

normalized axial distance in bed from the feed inlet

Z:

compressibility factor

μ :

gasviscosity[kg/(m s)]

ε bed :

bed void

ε t :

total bed void fraction

ρ bed :

bed density [kg/m3]

ρ g :

gasdensity[kg/m3]

ρ s :

solid density [kg/m3]

ρ w :

walldensity [kg/m3]

References

  1. J. G. Lu, M. D. Cheng, Y. Ji and Z. Hui, J. Fuel Chem. Technol., 37(6), 740 (2009).

    Article  CAS  Google Scholar 

  2. N. Casas, J. Schell, L. Joss and M. Mazzotti, Sep. Purif. Technol., 104, 183 (2013).

    Article  CAS  Google Scholar 

  3. M. Zaman and J. H. Lee, Korean J. Chem. Eng., 30(8), 1497 (2013).

    Article  CAS  Google Scholar 

  4. W. Sun, Y. Shen, D. Zhang, H. Yang and H. Ma, Ind. Eng. Chem. Res., 54(30), 7489 (2015).

    Article  CAS  Google Scholar 

  5. E. S. Kikkinides, R. T. Yang and S. H. Cho, Ind. Eng. Chem. Res., 32(11), 2714 (1993).

    Article  CAS  Google Scholar 

  6. K. T. Chue, J. N. Kim, Y. J. Yoo, S. H. Cho and R. T. Yang, Ind. Eng. Chem. Res., 34, 591 (1995).

    Article  CAS  Google Scholar 

  7. J.-G. Jee, S.-J. Lee, H.-M. Moon and C.-H. Lee, Adsorption, 11, 415 (2005).

    Article  Google Scholar 

  8. R. V. Siriwardane, M.-S. Shen and E. P. Fisher, Energy Fuels, 17(3), 571 (2003).

    Article  CAS  Google Scholar 

  9. M.-B. Kim, Y.-S. Bae, D.-K. Choi and C.-H. Lee, Ind. Eng. Chem. Res., 45(14), 5050 (2006).

    Article  CAS  Google Scholar 

  10. R. L. S. Canevesi, K. A. Andreassen, E. A. da Silva, C. E. Borba and C. A. Grande, Ind. Eng. Chem. Res., 57(23), 8057 (2018).

    Article  CAS  Google Scholar 

  11. A. Alonso-Vicario, J. R. Ochoa-Gómez, S. Gil-Río, O. Gómez-Jiménez-Aberasturi, C. A. Ramírez-López, J. Torrecilla-Soria and A. Domínguez, Micropor. Mesopor. Mater., 134(1–3), 100 (2010).

    Article  CAS  Google Scholar 

  12. T. Montanari, E. Finocchio, E. Salvatore, G. Garuti, A. Giordano, C. Pistarino and G. Busca, Energy, 36(1), 314 (2011).

    Article  CAS  Google Scholar 

  13. M. Mofarahi and E. J. Shokroo, Pet. Coal, 55(3), 216 (2013).

    Google Scholar 

  14. L. Hauchhum and P. Mahanta, Int. J. Energy Environ. Eng., 5, 349 (2014).

    Article  CAS  Google Scholar 

  15. E. J. Shokroo, D. J. Farsani, H. K. Meymandi and N. Yadollahi, Korean J. Chem. Eng., 33(4), 1391 (2016).

    Article  CAS  Google Scholar 

  16. S. P. Knaebel, D. Ko and L. T. Biegler, Adsorption, 11, 615 (2005).

    Article  Google Scholar 

  17. L. Jiang, L. T. Biegler and V. G. Fox, AIChE J., 49(5), 1140 (2003).

    Article  CAS  Google Scholar 

  18. L. Jiang, V. G. Fox and L. T. Biegler, AIChE J., 50(11), 2904 (2004).

    Article  CAS  Google Scholar 

  19. L. Jiang, L. T. Biegler and V. G. Fox, Comput. Chem. Eng., 29, 393 (2005).

    Article  CAS  Google Scholar 

  20. D. Ko, R. Siriwardane and L. T. Biegler, Ind. Eng. Chem. Res., 42(2), 339 (2003).

    Article  CAS  Google Scholar 

  21. D. Ko, R. Siriwardane and L. T. Biegler, Ind. Eng. Chem. Res., 44(21), 8084 (2005).

    Article  CAS  Google Scholar 

  22. D. Nikolic, A. Giovanoglou, M. C. Georgiadis and E. S. Kikkinides, Ind. Eng. Chem. Res., 47(9), 3156 (2008).

    Article  CAS  Google Scholar 

  23. A. Agarwal, L. T. Biegler and S. E. Zitney, Ind. Eng. Chem. Res., 48(5), 2327 (2009).

    Article  CAS  Google Scholar 

  24. S. Kim, D. Ko and I. Moon, Ind. Eng. Chem. Res., 55(48), 12444 (2016).

    Article  CAS  Google Scholar 

  25. D. Ko, Ind. Eng. Chem. Res., 55(33), 8967 (2016).

    Article  CAS  Google Scholar 

  26. D. Ko, Ind. Eng. Chem. Res., 55(4), 1013 (2016).

    Article  CAS  Google Scholar 

  27. Process Systems Enterprise, gPROMS, 1997–2017, www.psenterprise.com/gPROMS.

  28. J. A. Delgado and A. E. Rodrigues, Chem. Eng. Sci., 63, 4452 (2008).

    Article  CAS  Google Scholar 

  29. E.-A. Ahn, A study on experiments and simulations of PSA processes for hydrogen separation from reforming gas, Master Dissertation, Korea University, Republic of Korea (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daeho Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, D. Comparison of carbon molecular sieve and zeolite 5A for CO2 sequestration from CH4/CO2 mixture gas using vacuum pressure swing adsorption. Korean J. Chem. Eng. 38, 1043–1051 (2021). https://doi.org/10.1007/s11814-021-0771-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0771-y

Keywords

Navigation