Skip to main content

Operation of bio-aviation fuel manufacturing facility via hydroprocessed esters and fatty acids process and optimization of fuel property for turbine engine test

Abstract

Bio-aviation fuel to satisfy ASTM (American Society for Testing and Materials) specification was prepared through the stable operation of bio-aviation fuel manufacturing facility scale-expanded up to the production of bio-aviation fuel for turbine engine test. First, powder-typed 1.0 wt% Pt/Al2O3 and 0.5 wt% Pt/zeolite catalysts, respectively applicable to the hydrotreating and upgrading processes, were prepared and then their performance was evaluated in laboratory scale reactor. Thereafter, pellet-shaped 1.0 wt% Pt/Al2O3 and 0.5 wt% Pt/zeolite catalysts were prepared and applied to a bench-scale hydrotreating process and an upgrading process reactor, applied in the catalytic processes to prepare bio-aviation fuel. At this time, reaction characteristics under various operating conditions were investigated along with their catalytic performance evaluation. Stable long-term operation based on optimal reaction conditions, obtained in bench-scale reactor was performed using the hydrotreating process and the upgrading process reactors in a pilot-scale bio-aviation fuel manufacturing facility to continuously operate during a long time under optimal reaction conditions controlled, and then synthetic bio-crude oil including bio-aviation fuel composition was prepared. Through the separation and purification process that can selectively obtain bio-aviation fuel components, bio-aviation fuel conforming to ASTM specification standards was produced from the synthetic bio-crude oil obtained through combined hydrotreating-upgrading process.

This is a preview of subscription content, access via your institution.

References

  1. ICAO (International Civil Aviation Organization), CORSIA States for Chapter 3 State Pairs (2020).

  2. S. Kang, Korean Chem. Eng. Res., 57, 620 (2019).

    Google Scholar 

  3. S. R. Shabanian, S. Edrisi and F. V. Khoram, Korean J. Chem. Eng., 34, 2188 (2017).

    CAS  Article  Google Scholar 

  4. H. Lee, Y.-M. Kim, I.-G. Lee, J.-K. Jeon, S.-C. Jung, J. D. Chung, W. G. Choi and Y.-K. Park, Korean J. Chem. Eng., 33, 3299 (2016).

    CAS  Article  Google Scholar 

  5. H. W. Lee, H. Jeong, Y.-M. Ju and S. M. Lee, Korean J. Chem. Eng., 37, 1174 (2020).

    CAS  Google Scholar 

  6. Y. Lee, H. Shafaghat, J.-K. Kim, J.-K. Jeon, S.-C. Jung, I.-G. Lee and Y.-K. Park, Korean J. Chem. Eng., 34, 2180 (2017).

    CAS  Article  Google Scholar 

  7. IRENA (International Renewable Energy Agency), Biofuels for Aviation: Technology Brief (2017).

  8. Tony Radich, EIA (U.S Energy Information Administration), The Flight Paths for Biojet Fuel (2015).

  9. W.-C. Wang, L. Tao, J. Markham, Y. Zhang, E. Tan, L. Batan, E. Warner and M. Biddy, NREL (National Renewable Energy Laboratory), Review of Biojet Fuel Conversion Technologies (2016).

  10. DOE (U.S Department of Energy), Alternative Aviation Fuels: Overview of challenges, Opportunities, and Next Steps (2017).

  11. Borislavav Kostova, DOE (U.S Department of Energy), Current Status of Biorefining in USA (2017).

  12. J. Bosch, S. D. Jong, R. Hoefnagels and R. Slade, Aviation biofuels: strategically important, technically achievable, tough to deliver, Imperial College London Grantham Institute Briefing Paper No 23 (2017).

  13. https://www.darpa.mil/program/biofuels.

  14. P. T. Do, M. Chiappero, L. L. Lobban and D. E. Resasco, Catal. Lett., 130, 9 (2009).

    CAS  Article  Google Scholar 

  15. T. Morgan, D. Grubb, E. Santillan-Jimenez and M. Crocker, Top. Catal., 53, 820 (2010).

    CAS  Article  Google Scholar 

  16. H. J. Robota, J. C. Alger and L. Shafer, Energy Fuels, 27, 985 (2013).

    CAS  Article  Google Scholar 

  17. B. Peng, Y. Yao, C. Zhao and J. A. Lercher, Angew. Chem., 51, 2072 (2012).

    CAS  Article  Google Scholar 

  18. D. Kubicka and L. Kaluza, Appl. Catal., A, 372, 199 (2010).

    CAS  Article  Google Scholar 

  19. O. I. Senol, T. R. Viljava and A. O. I. Krause, Catal. Today, 106, 186 (2005).

    CAS  Article  Google Scholar 

  20. H. Jeong, M. Shin, B. Jeong, J. H. Jang, G. B. Han and Y.-W. Suh, J. Ind. Eng. Chem., 83, 189 (2020).

    CAS  Article  Google Scholar 

  21. J. Zhang and C. Zhao, Chem. Commun., 51, 17249 (2015).

    CAS  Article  Google Scholar 

  22. D. Chiaramonti, M. Buffi, A. M. Rizzo, G. Lotti and M. Prussi, Biomass Bioenergy, 95, 424 (2016).

    CAS  Article  Google Scholar 

  23. M. Lu, X. Liu, Y. Li, Y. Nie, X. Lu, D. Deng, Q. Xie and J. Ji, J. Renew. Sust. Energy, 8, 053103 (2016).

    Article  Google Scholar 

  24. W. Jicong, B. Peiyan, Z. Yajing, X. He, J. Peiwen, W. Xiaoping, L. Junxu, W. Tiejun and L. Quanxin, Energy, 86, 488 (2015).

    Article  Google Scholar 

  25. I. H. Choi, J. S. Lee, C. U. Kim, T. W. Kim, K. Y. Lee and K. R. Hwang, Fuel, 215, 675 (2018).

    CAS  Article  Google Scholar 

  26. M. Saidi and A. Jahangiri, Chem. Eng. Res. Des., 121, 393 (2017).

    CAS  Article  Google Scholar 

  27. K. Zhang, X. Zhang and T. Tan, RSC Adv., 6, 99842 (2016).

    CAS  Article  Google Scholar 

  28. D. Verma, R. Kumar, B. S. Rana and A. K. Sinha, Energy Environ. Sci., 4, 1667 (2011).

    CAS  Article  Google Scholar 

  29. S. Liu, Q. Zhu, Q. Guan, L. He and W. Li, Bioresour. Technol., 183, 93 (2015).

    CAS  Article  Google Scholar 

  30. T. Li, J. Cheng, R. Huang, J. Zhou and K. Cen, Bioresour. Technol., 197, 289 (2015).

    CAS  Article  Google Scholar 

  31. M. Y. Kim, J.-K. Kim, M.-E. Lee, S. Lee and M. Choi, ACS Catal., 7, 6256 (2017).

    CAS  Article  Google Scholar 

  32. R. V. Chaudhari, R. Jaganathan, D. S. Kolhe, G. Emig and H. Hofmann, Ind. Eng. Chem., 25, 375 (1986).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gi Bo Han.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, G.B., Jang, J.H., Ahn, M.H. et al. Operation of bio-aviation fuel manufacturing facility via hydroprocessed esters and fatty acids process and optimization of fuel property for turbine engine test. Korean J. Chem. Eng. 38, 1205–1223 (2021). https://doi.org/10.1007/s11814-021-0770-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0770-z

Keywords

  • Bio-Aviation Fuel
  • Palm Oil
  • HEFA Process
  • Manufacturing Facility Operation
  • Fuel Properties
  • ASTM Standard Specification