Skip to main content
Log in

Flow pattern study, gas hold-up and gas liquid mass transfer correlations in a bubble column: Effect of non — coalescing water — organic mixtures

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Experiments of hydrodynamic and gas liquid mass transfer were carried out in a bubble column of 19.4 cm internal diameter and of 4 m height. The liquid phase can be either tap water or a coalescence inhibitor system, using aqueous solutions of three alcohols (ethanol, 2-propanol and 1-butanol) with a volumetric concentration of 0.05% v/v and sodium dodecyl sulfate: SDS (10−3 mol/L) as an anionic surfactant. The hydrodynamic study involved placing wall pressure sensors in different axial positions of a bubble column to determine the gas hold-up in different regions and the influence of non-coalescing system on its evolution. The overall liquid movement induced by bubbles and the residence time distribution analysis of liquid phase was performed by using inductivity sensors. Gas hold-up results showed that the presence of the gas is more important in the zone far enough to the gas distributor (zone II). The results of the volumetric mass transfer coefficient (KLa) revealed that KLa decreased with the addition of alcohol, especially when the number of carbons in alcohol increased. KLa decreased more with the addition of anionic surfactant. It was also proven that a decrease in KLa was due to a decrease in KL, which was due to a decrease of bubble rise velocity as well as of the diffusivity when alcohol or ionic surfactant was added. Correlations were developed linking gas holdup and gas-liquid mass transfer coefficient to superficial gas velocity and surface tension gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Azizi and A. M. Al Taweel, Chem. Eng. Sci., 62, 7436 (2007).

    Article  CAS  Google Scholar 

  2. B. Magolan, N. Lubchenko and E. Baglietto, Chem. Eng. Sci.: X, 2, 100009 (2019).

    Google Scholar 

  3. M. Y. Chisti, Airlift bioreactors, Elsevier, New York (1989).

    Google Scholar 

  4. E. Camarasa, C. Vial, S. Poncin, G. Wild, N. Midoux and J. Bouillard, Chem. Eng. Process., 60, 329 (1999).

    Article  Google Scholar 

  5. C. Vial, E. Camarasa, S. Poncin, G. Wild, N. Midoux and J. Bouillard, Chem. Eng. Sci., 55, 2957 (2000).

    Article  CAS  Google Scholar 

  6. H. Jin, S. Yang, G. He, Z. Guo and Z. Tong, Chem. Eng. Sci., 60, 5955 (2005).

    Article  CAS  Google Scholar 

  7. A. Erfani, S. Khosharay and P. A. Clint, J. Chem. Thermodyn., 135, 241 (2019).

    Article  CAS  Google Scholar 

  8. E. M. Cachaza, M. E. Díaz, F. J. Montes and M. A. Galán, Chem. Eng. Sci., 66, 4047 (2011).

    Article  CAS  Google Scholar 

  9. G. De Guido and L. A. Pellegrini, Chem. Eng. Res. Des., 124, 283 (2017).

    Article  CAS  Google Scholar 

  10. G. Besani and F. Inzoli, Chem. Eng. Sci., 170, 270 (2017).

    Article  CAS  Google Scholar 

  11. C. O. Vandu and R. Krishna, Chem. Eng. Process., 43, 987 (2004).

    Article  CAS  Google Scholar 

  12. A. S. Mirón, F. C. C. Camacho, A. C. Gomez, E. M. Grima and Y. Chisti, AIChE J., 46, 1872 (2000).

    Article  Google Scholar 

  13. B. Gourich, C. Vial, A. H. Essadki, F. Allam, S. M. Belhaj, M. Ziyad and H. Delmas, Chem. Eng. Process., 45, 214 (2006).

    Article  CAS  Google Scholar 

  14. M. Martín, F. J. Montes and M. A. Galán, Chem. Eng. J., 128, 21 (2007).

    Article  CAS  Google Scholar 

  15. O. Ramazan and D. Gülbeyi, Chem. Eng. Res. Des., 109, 477 (2016).

    Article  CAS  Google Scholar 

  16. P. Kováts, D. Thévenin and K. Zähringer, Int. J. Multiphase Flow, 123, 103174 (2020).

    Article  CAS  Google Scholar 

  17. S. Shu, D. Vidal, F. Bertrand and J. Chaouki, Renew. Energy, 141, 613 (2019).

    Article  CAS  Google Scholar 

  18. T. A. Dolenko, S. A. Burikov, S. A. Dolenko, A. O. Efitorov, I. V. Plastinin, V. I. Yuzhakov and S. V. Patsaeva, J. Phys. Chem. A, 119, 10806 (2015).

    Article  CAS  Google Scholar 

  19. K. Guo, T. Wang, G. Yang and J. Wang. J. Chem. Technol. Biotechnol., 92, 432 (2017).

    Article  CAS  Google Scholar 

  20. S. R. Syeda, A. Afacan and K. T. Chuang, Can. J. Chem. Eng., 80, 44 (2002).

    Article  CAS  Google Scholar 

  21. D. Rosso, D. T. Huo and M. K. Stenstrom, Chem. Eng. Sci., 61, 5500 (2006).

    Article  CAS  Google Scholar 

  22. S. S. Alves, S. P. Orvalho and J. M. T. Vasconcelos, Chem. Eng. Sci., 60, 1 (2005).

    Article  CAS  Google Scholar 

  23. J. Solsvik and H. A. Jakobsen, J. Dispersion Sci. Technol., 35, 1626 (2014).

    Article  CAS  Google Scholar 

  24. T. O. Oolman and H. W. Blanch, Chem. Eng. Commun., 43, 237 (1986).

    Article  CAS  Google Scholar 

  25. J. Zahradnik, M. Fialova and V. Linek, Chem. Eng. Sci., 54, 4757 (1999).

    Article  CAS  Google Scholar 

  26. T. Fujimoto, Sanyo Chemical Industries Ltd., Kyoto (Japan) (1985).

  27. J. M. T. Vasconcelos, S. P. Orvalho and S. S. Alves, Am. Inst. Chem. Engineers J., 48, 1145 (2002).

    Article  CAS  Google Scholar 

  28. J. Boussinesq, Annales de Chimie et de Physique, 29, 364 (1913).

    Google Scholar 

  29. F. H. Garner and D. Hammerton, Chem. Eng. Sci., 3, 1 (1954).

    Article  CAS  Google Scholar 

  30. S. S. Dukhin, V. I. Kovalchuk, G. G. Gochev, M. Lotfi, M. Krzan, K. Malysa and R. Miller, Adv. Colloid Interface Sci., 222, 260 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. S. R. Syeda and M. J. Reza, Chem. Eng. Res. Des., 89, 2552 (2011).

    Article  CAS  Google Scholar 

  32. S. Khoshray, M. Talebi, T. S. Akbari and S. T. Salehi, J. Mol. Liq., 249, 245 (2018).

    Article  CAS  Google Scholar 

  33. D. R. Torn and G. M. Nathanson, J. Phys. Chem. B, 106, 8064 (2002).

    Article  CAS  Google Scholar 

  34. F. Biscay, A. Ghoufi and P. Malfreyt, J. Chem. Phys., 134, 044709 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. B. Albijnic, S. Chatterjie, N. Subasinghe and M. A. W. Asad, Chem. Eng. Res. Des., 113, 241 (2016).

    Article  CAS  Google Scholar 

  36. J. Zahradník and M. Fialová, Chem. Eng. Sci., 51, 2491 (1996).

    Article  Google Scholar 

  37. J. Zahradník, M. Fialová, M. Růžička, J. Drahoš, F. Kăstánek and N. H. Thomas, Chem. Eng. Sci., 52, 3811 (1997).

    Article  Google Scholar 

  38. O. Levenspiel, Chemical reaction engineering, Third Ed. John Wiley & Sons, New York (1999).

    Google Scholar 

  39. A. H. Essadki, B. Gourich, C. Vial and H. Delmas, Chem. Eng. Sci., 66, 3125 (2011).

    Article  CAS  Google Scholar 

  40. M. K. Stenstrom and R. G. Gilbert, Wat. Res., 15(6), 643 (1981).

    Article  CAS  Google Scholar 

  41. M. Jamnongwong, K. Loubière, N. Dietrich and G. Hebrard, Chem. Eng. J., 165, 758 (2010).

    Article  CAS  Google Scholar 

  42. N. Frössling, Gerlands Beitage zur Geophysik, 52, 170 (1938).

    Google Scholar 

  43. M. Rocio, S. Rui and S. S. Alves, Chem. Eng. Sci., 62, 6747 (2007).

    Article  CAS  Google Scholar 

  44. R. M. Griffith, Chem. Eng. Sci., 17, 1057 (1962).

    Article  CAS  Google Scholar 

  45. B. Gourich, Ch. Vial, N. El Azher, M. Belhaj Soulami and M. Ziyad, Biochem. Eng. J., 39, 1 (2008).

    Article  CAS  Google Scholar 

  46. L. Han and M. H. Al-Dahhan, Chem. Eng. Sci., 62, 131 (2007).

    Article  CAS  Google Scholar 

  47. M. Zedníková, S. Orvalho, M. Fialová and M. Růžička, Chem. Eng., 2, 19 (2018).

    Google Scholar 

  48. M. Asgharpour, M. R. Mehrnia and N. Mostoufi, Biochem. Eng. J., 49, 351 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the financial support from a specific university research fund of the Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel Hafid Essadki.

Additional information

Declaration of Interest Statement

The authors state that no financial relationship connects them with individuals or organizations that can influence the results of their work. The work presented is the result of a purely scientific effort.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadili, A., Essadki, A.H. Flow pattern study, gas hold-up and gas liquid mass transfer correlations in a bubble column: Effect of non — coalescing water — organic mixtures. Korean J. Chem. Eng. 38, 924–937 (2021). https://doi.org/10.1007/s11814-021-0743-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0743-2

Keywords

Navigation