Skip to main content
Log in

Synthesis of mesoporous 2-line ferrihydrite/γ-Al2O3 hybrid adsorbent for the effective adsorption of phosphate for water remediation

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A 2-line ferrihydrite/γ-A2O3 hybrid adsorbent (Fh/γ-Al2O3 hybrid adsorbent) precipitated on 10wt% of γ-Al2O3 seed for the effective adsorption of phosphate in water was synthesized from wastewater containing ferric sulfate. The use of γ-Al2O3 seeds for particle initiation made it possible to prepare larger particles that would allow a liquid to flow through. The synthesized Fh/γ-Al2O3 hybrid adsorbent was characterized by X-ray diffraction, 27Al-MAS NMR, N2 adsorption/desorption, SEM analysis, and EpHL measurements. The adsorption performance of phosphate on the synthesized Fh/γ-Al2O3 hybrid adsorbent was evaluated by batch and column tests at phosphate concentration below 10 ppm, which corresponds to the actual phosphate concentration of natural systems. The adsorption mechanism suggested by the batch test was in good agreement with the Langmuir adsorption model, with a maximum adsorption capacity of 33.2 mg/g. On the other hand, the experiment with the column obtained a maximum adsorption capacity of 33.6 mg/g for a volumetric flow rate of 10.25 BV/min and an influent phosphate concentration of 4.75 ppm on 0.5 g of adsorbent. The Fh/γ-Al2O3 hybrid adsorbent was shown to have superior adsorption characteristics to those of other previous research in terms of cost, adsorption efficiency, contact time, maximum adsorption capacity, and desorption efficiency of 95% from the experimental condition based on the surface characterization of the adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b:

adsorption constant of the Langmuir isotherm model [mg/g]

Co :

initial phosphate concentration [mg/L]

Ce :

equilibrium phosphate concentration [mg/L]

Kf :

Freundlich constant [mg/g]

m:

mass of the adsorbent [g]

n:

Freundlich exponent, dimensionless

pHdes :

pH of desorption

qe :

equilibrium capacity of phosphate [mg/g]

qm :

maximum amount of adsorbed phosphate by Langmuir isotherm model [mg/g]

qmax :

maximum amount of adsorbed phosphate in column test [mg/g]

R2 :

correlation factor

V:

volume of phosphate solution [mL]

γ :

gamma

References

  1. D. Carta, M. F. Casula, A. Corrias, A. Falqui, G. Navarra and G. Pinna, Mater. Chem. Phys., 113, 349 (2009).

    Article  CAS  Google Scholar 

  2. X. Wang, W. Li, R. Harrington, F. Liu, J. B. Parise, X. Feng and D. L. Sparks, Environ. Sci. Technol., 47, 10322 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. F. M. Michel, L. Ehm, S. M. Antao, P. L. Lee, P. J. Chupas, G. Liu, D. R. Strongin, M. A. A. Schoonen, B. L. Phillips and J. B. Parise, Science, 316, 1726 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. J. C. Mendez and T. Hiemstra, Chem. Geol., 532, 119304 (2020).

    Article  CAS  Google Scholar 

  5. T. S. Peretyazhko, S. J. Ralston, B. Sutter and D. W. Ming, J. Geophys. Res.-Planets, 125, 1 (2020).

    Article  CAS  Google Scholar 

  6. A. Namayandeh and N. Kabengi, J. Colloid Interface Sci., 540, 20 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. K. Rout, M. Mohapatra and S. Anand, Dalton Trans., 41, 3302 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. S. Das, M. J. Hendry and J. Essilfie-Doughan, Environ. Sci. Technol., 45, 5557 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Z. Liu, Y. Lu and X. Duan, Int. J. Environ. Anal. Chem., https://doi.org/10.1080/03067319.2020.1779246 (2020).

  10. E. H. Winstanley, K. Morris, L. G. Abrahamsen-Mills, R. Blackham and S. Shaw, J. Hazard. Mater., 366, 98 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Y. Liang, L. Tian, Y. Lu, L. Peng, P. Wang, J. Lin, T. Cheng, Z. Dangab and Z. Shi, Environ. Sci.: Processes Impacts, 20, 934 (2018).

    CAS  Google Scholar 

  12. J. Zhu, M. Pigna, V. Cozzolino, A. G. Caporale and A. Violante, Geoderma, 159, 409 (2010).

    Article  CAS  Google Scholar 

  13. S. Zhou, T. Sato and T. Otake, Minerals, 8, 101 (2018).

    Article  CAS  Google Scholar 

  14. A. J. Hobson, D. I. Stewart, A. W. Bray, R. J. G. Mortimer, W. M. Mayes, A. I. Riley, M. Rogerson and I. T. Burke, Sci. Total Environ., 643, 1191 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. S. Das, J. Essilfie-Dughan and M. J. Hendry, Appl. Geochem., 73, 70 (2018).

    Article  CAS  Google Scholar 

  16. S. Kikuchi, T. Kashiwabara, T. Shibuya and Y. Takehashi, Geochim. Cosmochim. Acta, 251, 1 (2019).

    Article  CAS  Google Scholar 

  17. J. A. Arcibar-Orozco, R. Wallace, J. K. Mitchell and T. J. Bandosz, Langmuir, 31, 2730 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. T. Mathew, K. Suzuki, Y. Ikuta, Y. Nagai, N. Takahashi and H. Shinjoh, Angew. Chem. Int. Ed., 50, 7381 (2011).

    Article  CAS  Google Scholar 

  19. H. Osawa, J. Lohwacharin and S. Takizawa, Sep. Purif. Technol., 176, 184 (2017).

    Article  CAS  Google Scholar 

  20. L. A. Chiavacci, K. Dahmouche, N. J. O. Silva, L. D. Carlos, V. S. Amaral, V. Bermudez, S. H. Pulcinelli, C. V. Santilli, V. Briois and A. F. Craievich, J. Non-Crystalline Solids, 345, 585 (2004).

    Article  CAS  Google Scholar 

  21. A. R. Wallace, C. Su and W. Sun, Environ. Eng. Sci., 36, 634 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. G. Li, D. Chen, W. Zhao and X. Zhang, J. Environ. Chem. Eng., 3, 515 (2015).

    Article  CAS  Google Scholar 

  23. S. Yang, Y. Zhao, R. Chen, C. Feng, Z. Zhang, Z. Lei and Y. Yang, J. Colloid Interface Sci., 396, 197 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. L. Lai, Q. Xie, L. Chi, W. Gu and D. Wu, J. Colloid Interface Sci., 465, 76 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. D. Mitrogiannis, M. Psychoyou, I. Baziotis, V. J. Inglezakis, N. Koukouzas, N. Tsoukalas, D. Palles, E. Kamitsos, G. Oikonomou and G. Markou, Chem. Eng. J., 320, 510 (2017).

    Article  CAS  Google Scholar 

  26. F. Li, W. Wu, R. Li and X. Fu, Appl. Clay Sci., 132, 343 (2016).

    Article  CAS  Google Scholar 

  27. Z. Ren, L. Shao and G. Zhang, Water Air Soil Pollut., 223, 4221 (2012).

    Article  CAS  Google Scholar 

  28. X. Huang, G. D. Foster, R. V. Honeychuck and J. A. Schreifels, Langmuir, 25, 4450 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. E. Chmielewská, R. Hodossyová and M. Bujdoš, Pol. J. Environ. Stud., 5, 1307 (2013).

    Google Scholar 

  30. B. J. Kang, J. Adv. Eng. Technol., 4, 475 (2011).

    Google Scholar 

  31. C. A. Fyte, G. C. Gobbl, J. S. Hartmen, J. Kllnowski and J. M. Thomas, J. Phys. Chem., 86, 1247 (1982).

    Article  Google Scholar 

  32. S. Komarneni, R. Roy and D. M. Roy, Cem. Concr. Res., 15, 723 (1985).

    Article  CAS  Google Scholar 

  33. T. R. Lopes, G. R. Goncalves, E. de Barcellos Jr., M. A. Schettino Jr., A. G. Cunha, F. G. Emmerich and J. C. C. Freitas, Carbon, 93, 751 (2015).

    Article  CAS  Google Scholar 

  34. D. Muller, W. Gessner, H.-J. Behrens and G. Scheler, Chem. Phys. Lett., 79, 59 (1981).

    Article  Google Scholar 

  35. L. F. Nazar and L. C. Klein, Commun. Am. Ceram. Soc., 71, C-85 (1988).

    Article  CAS  Google Scholar 

  36. L. Samain, A. Jaworski, M. Eden, D. M. Ladd and D. K. Seo, J. Solid State Chem., 217, 1 (2014).

    Article  CAS  Google Scholar 

  37. P. S. Kumar, T. Prot, L. Korving, K. J. Keesman, I. Dugulan, M. C. M. van Loosdrecht and G. J. Witkamp, Chem. Eng. J., 326, 231 (2017).

    Article  CAS  Google Scholar 

  38. J. R. Regalbuto, Catalyst preparation science and engineering, CRC Press, New York (2007).

    Google Scholar 

  39. R. Richards, Surface and nanomolecular catalysis, CRC Press, New York (2006).

    Book  Google Scholar 

  40. A. Ghosh, S. Paul, S. Bhattacharys, P. Sasikumar, K. Biswas and U. C. Ghosh, Environ. Sci. Pollut. Res., 26, 4618 (2019).

    Article  CAS  Google Scholar 

  41. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).

    Article  CAS  Google Scholar 

  42. H. M. F. Freundlich, Z. Phys. Chem-Frankf., 57A, 385 (1906).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Project No.: 2019R1I1A1 A01041329). Solid-state NMR experiments were carried out on the Bruker AVANCES II+ 400 MHz NMR system and FE-SEM (in KBSI Seoul Western Center) and the XRD measurements were conducted on the X-ray diffractometer (in KBSI Seoul Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Joon Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, SJ. Synthesis of mesoporous 2-line ferrihydrite/γ-Al2O3 hybrid adsorbent for the effective adsorption of phosphate for water remediation. Korean J. Chem. Eng. 38, 326–336 (2021). https://doi.org/10.1007/s11814-020-0708-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0708-x

Keywords

Navigation