Skip to main content
Log in

Theoretical investigation on the throttle pressure reducing valve through CFD simulation and validating experiments

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The throttle pressure reducing valve has potential for the high pressure heat exchanger with the advantage of simple structure, easy operation and maintenance. We investigated the discharge capacity under different pressure difference between inlet and outlet, the area of inlet and throttle though CFD simulation and validating experiments. A theoretical formula of the discharge capacity was developed through the theoretical analysis and simulated results and was well proved by the experiments. The results revealed that the square of discharge capacity is positively proportional to the pressure difference, and the drag coefficient has a linear relationship with the throttle area and the reciprocal of flange area. This research establishes the theoretical basis for the designing and engineering application of throttle pressure reducing valve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Álvarez-Fernández, L. d. Portillo-Valdés and C. Alonso-Tristán, Appl. Therm. Eng., 68, 45 (2014).

    Article  Google Scholar 

  2. G. Heo and S. K. Lee, Expert Syst. Appl., 39, 5078 (2012).

    Article  Google Scholar 

  3. J. Xu, T. Yang, Y. Sun, K. Zhou and Y. Shi, Appl. Therm. Eng., 67, 179 (2014).

    Article  Google Scholar 

  4. D. M. Godino, S. F. Corzo, N. M. Nigro and D. E. Ramajo, Nucl. Eng. Des., 335, 265 (2018).

    Article  CAS  Google Scholar 

  5. S. Kim, B.-U. Bae, Y.-J. Cho, Y.-S. Park, K.-H. Kang and B.-J. Yun, Nucl. Eng. Des., 260, 54 (2013).

    Article  CAS  Google Scholar 

  6. M. Gong, M. Peng and H. Zhu, Appl. Therm. Eng., 140, 190 (2018).

    Article  Google Scholar 

  7. S. M. Hossienalipour, S. Karbalaee M and H. Fathiannasab, Appl. Therm. Eng., 110, 590 (2017).

    Article  Google Scholar 

  8. Z. Jin, L. Wei, L. Chen, J. Qian and M. Zhang, J. Zhejiang Univ-SCI A, 14, 137 (2013).

    Article  Google Scholar 

  9. L. Luo, X. He, B. Den and X. Huang, J. Press. Vessel Technol., 136, 0216011 (2014).

    Google Scholar 

  10. X. He, B. Deng, X. Huang and X. Yan, Adv. Mater. Res., 842, 569 (2014).

    Article  Google Scholar 

  11. Z. Jin, F. Chen, J. Qian, M. Zhang, L. Chen, F. Wang and Y. Fei, Int. J. Hydrogen Energy, 41, 5559 (2016).

    Article  CAS  Google Scholar 

  12. J. Qian, M. Zhang, L. Lei, F. Chen, L. Chen, L. Wei and Z. Jin, Energy Convers. Manage., 119, 81 (2016).

    Article  Google Scholar 

  13. L. Wei and Z. Jin, J. Acoust. Soc. Am., 134, 4191 (2013).

    Article  Google Scholar 

  14. Z. Jin, L. Wei, G. Zhu, J. Qian, Y. Fei and Z. Jin, PLos One, 10, 01 (2015).

    Google Scholar 

  15. C. Hou, J. Qian, F. Chen, W. Jiang and Z. Jin, Appl. Therm. Eng., 128, 1238 (2018).

    Article  Google Scholar 

  16. B. Saha, H. Chattopadhyay, P. Mandal and T. Gangopadhyay, Comput. Fluids, 101, 233 (2014).

    Article  Google Scholar 

  17. A. Beune, J. G. M. Kuerten and J. Schmidt, AIChE J., 57, 3285 (2011).

    Article  CAS  Google Scholar 

  18. A. Beune, J. G. M. Kuerten and M. P. C. van Heumen, Comput. Fluids, 64, 108 (2012).

    Article  Google Scholar 

  19. J. Qian, L. Wei, Z. Jin, J. Wang, H. Zhang and A. Lu, Energy Convers. Manage., 87, 220 (2014).

    Article  Google Scholar 

  20. P. Zhang, D. Zhou, W. Shi, X. Li and B. Wang, Appl. Therm. Eng., 65, 384 (2014).

    Article  Google Scholar 

  21. D. Chalet and P. Chesse, Eng. Appl. Comp. Fluid Mech., 4, 387 (2010).

    Google Scholar 

  22. P. Feng, D. Chen, Y. Cao and Y. Chen, Korean J. Chem. Eng., 37, 604 (2020).

    Article  CAS  Google Scholar 

  23. P. Zahedi, R. Saleh, R. Moreno-Atanasio and K. Yousefi, Korean J. Chem. Eng., 31, 1349 (2014).

    Article  CAS  Google Scholar 

  24. L. Li and B. Xu, Korean J. Chem. Eng., 33, 2007 (2016).

    Article  CAS  Google Scholar 

  25. S. E. Rafiee and M. M. Sadeghiazad, Aerosp. Sci. Technol., 63, 110 (2017).

    Article  Google Scholar 

  26. J. Wackers, G. Deng, E. Guilmineau, A. Leroyer, P. Queutey, M. Visonneau, A. Palmieri and A. Liverani, J. Comput. Phys., 344, 364 (2017).

    Article  CAS  Google Scholar 

  27. Y. Sun, J. Yu, W. Wang, S. Yang, X. Hu and J. Feng, Korean J. Chem. Eng., 37, 743 (2020).

    Article  Google Scholar 

  28. S. E. Rafiee and M. M. Sadeghiazad, J. Marine Sci. Appl., 15, 388 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by China Postdoctoral Science Foundation (2020M671654), Natural Science Foundation of Jiangsu Province (BK20190633), A Project of Shandong Province Higher Educational Science and Technology Program (J17KA181), the National Natural Science Foundation of China (51774285).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyong Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, E., Nie, C., Jiang, X. et al. Theoretical investigation on the throttle pressure reducing valve through CFD simulation and validating experiments. Korean J. Chem. Eng. 38, 400–405 (2021). https://doi.org/10.1007/s11814-020-0703-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0703-2

Keywords

Navigation