Skip to main content
Log in

Effects of sludge pyrolysis temperature and atmosphere on characteristics of biochar and gaseous products

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In view of the importance of inert-atmosphere sludge pyrolysis for effective waste recycling and carbon emission reduction, this study probed the effects of temperature (300–700 °C) and atmosphere (100% N2, 10 CO2/90% N2, or 100% CO2) on the properties of biochar and gases obtained by sludge pyrolysis in a horizontal tube furnace. The emissions of NO, SO2, H2S, and CO increased with increasing temperature, as the inhibitory effect of CO2 on the formation of these gases (observed at <500 °C) concomitantly weakened and was superseded by the reaction of CO2 with carbon at higher temperature to afford gaseous products. The specific surface area (SBET) and pore volume of the biochar produced in the presence of CO2 increased with increasing temperature up to 500 °C, while at higher temperatures the inhibitory effect of CO2 on pore structure development resulted in a decreased SBET and an increased macropore content. These results show that pyrolysis is an effective treatment method for sludge; it can remove 48% N and 50% S in sludge and mitigate the emission of polluting gases. When CO2 participates in the pyrolysis reaction, the SBET of biochar increases significantly. In general, sludge biochar has the potential to be applied as fuel and as an adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Tian, J. Zhang, W. Zuo, L. Chen, Y. N. Cui and T. Tan, Environ. Sci. Technol., 47, 3498 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. S. Zandi, B. Nemati, D. Jahanianfard, M. Davarazar, Y. Sheikhnejad, A. Mostafaie, M. Kamali and T. M. Aminabhavi, J. Environ. Manage, 247, 462 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. G. Yang, G. G. Zhang and H. C. Wang, Water Res., 78, 60 (2015).

    Article  PubMed  CAS  Google Scholar 

  4. S. J. Sun, Z. B. Zhao, B. Li, L. X. Ma, D. L. Fu, X. Z. Sun, S. Thape, J. M. Shen, H. Qi and Y. N. Wu, Environ. Pollut, 245, 764 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Y. H. Feng, T. C. Yu, D. Z. Chen, G. L. Xu, L. Wan, Q. Zhang and Y. Y. Hu, Energy Fuels, 32, 581 (2018).

    Article  CAS  Google Scholar 

  6. I. A. Aldobouni, A. B. Fadhil and I. K. Saied, Energy Sources, Part A: Recov, Utilization, Environ. Effects, 37, 2617 (2015).

    Article  CAS  Google Scholar 

  7. A. B. Fadhil, M. A. Alhayali and L. I. Saeed, Fuel, 210, 165 (2017).

    Article  CAS  Google Scholar 

  8. L. Y. Gao, J. H. Deng, G. F. Hang, K. Li, K. Z. Cai, Y. Liu and F. Huang, Bioresour. Technol, 272, 114 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Y. Yue, L. Cui, Q.M. Lin, G.T. Li and X.R. Zhao, Chemosphere, 173, 551 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. H. R. Yuan, T. Lu, H. Y. Huang, D. D. Zhao, N. Kobayashi and Y. Chen, J. Anal. Appl. Pyrolysis, 112, 284 (2015).

    Article  CAS  Google Scholar 

  11. W.D.C. Udayanga, A. Veksha, A. Giannis and T.T. Lim, Waste Manag., 83, 131 (2019).

    Article  CAS  Google Scholar 

  12. X. D. Wang, Q. Q. Chi, X. J. Liu and Y Wang, Chemosphere, 216, 698 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Y. He and X. Q. Ma, Bioresour. Technol., 189, 71 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. L. B. Duan, C. S. Zhao, W Zhou, C. R. Qu and X. P. Chen, Energy Fuels, 23, 3826 (2009).

    Article  CAS  Google Scholar 

  15. B. Prabowo, M. Aziz, K. Umeki, H. Susanto, M. Yan and K. Yoshikawa, Appl. Energy, 158, 97 (2015).

    Article  CAS  Google Scholar 

  16. Z. G. Tan, J. H. Zou, L. M. Zhang and Q. Y Huang, J. Mater. Cycles. Waste Manag., 20, 1036 (2018).

    Article  CAS  Google Scholar 

  17. X. F. Zhu, K. Li, L. Q. Zhang, X. Wu and X. F. Zhu, Energy Convers. Manag., 157, 288 (2018).

    Article  CAS  Google Scholar 

  18. C. Guizani, J. E. Sanz and S. Salvador, Fuel, 116, 310 (2014).

    Article  CAS  Google Scholar 

  19. M. Kończak, P. Oleszczuk and K. Rózyło, J. CO2 Util., 29, 20 (2019).

    Article  CAS  Google Scholar 

  20. Y. H. Bai, P. Wang, L. J. Yan, C. L. Liu, F. Li and K. Xie, J. Anal. Appl. Pyrolysis, 104, 202 (2013).

    Article  CAS  Google Scholar 

  21. S. P. Gao, J. T. Zhao, Z. Q. Wang, J. F. Wang, Y. T. Fang and J. J. Huang, J. Fuel Chem. Technol., 41, 257 (2013).

    Article  CAS  Google Scholar 

  22. Z. W. Liu, F. X. Zhang, H. L. Liu, F. Ba, S. J. Yan and J. H. Hu, Bioresour. Technol., 249, 983 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. International A. ASTM E711-87. Standard test method for gross calorific value of refuse-derived fuel by the bomb calorimeter (2004).

  24. Z. X. Xu, L. Xu, J. H. Cheng, Z. X. He, Q. Wang and X. Hu, Fuel Process. Technol., 182, 37 (2018).

    Article  CAS  Google Scholar 

  25. R. Xiong, L. Dong, J. Yu, X. F. Zhang, L. Jin and G. W. Xu, Fuel Process. Technol., 91, 810 (2010).

    Article  CAS  Google Scholar 

  26. A. Attar, Fuel, 57, 201 (1978).

    Article  CAS  Google Scholar 

  27. Y. Q. Duan, L. B. Duan, E. J. Anthony and C. S. Zhao, Fuel, 189, 98 (2017).

    Article  CAS  Google Scholar 

  28. H. Q. Guo, X. L. Wang, F. R. Liu, M. J. Wang, H. Zhang, R. S. Hu and Y. F. Hu, Fuel, 206, 716 (2017).

    Article  CAS  Google Scholar 

  29. H. Q. Wang, K. K. Li, Z. H. Guo, M. X. Fang, Z. Y. Luo and K. F. Cen, Carbon Resour. Convers., 1, 94 (2018).

    Article  Google Scholar 

  30. J. H. Kim, J. I. Oh, J. Lee and E. E. Kwon, Energy, 179, 163 (2019).

    Article  CAS  Google Scholar 

  31. Z. Khanmohammadi, M. Afyuni and M. R. Mosaddeghi, Waste Manag. Res., 33, 275 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. D. W. Cho, G. Kwon, K. Yoon, Y. F. Tsang, Y. S. Ok and E. E. Kwon, Energy Convers. Manag., 145, 1 (2017).

    Article  CAS  Google Scholar 

  33. Y. H. Song, Q. N. Ma and W. J. He, Energy Fuels, 31, 217 (2017).

    Article  CAS  Google Scholar 

  34. L. Wang, J. Sandquist, G. Varhegyi and B. M. Güell, Energy Fuels, 27, 6098 (2013).

    Article  CAS  Google Scholar 

  35. R. Wen, B. Yuan, Y. Wang, W.M. Cao, Y. Liu, Y. Jia and Q. Liu, Environ. Sci. Pollut. Res., 25, 5105 (2018).

    Article  CAS  Google Scholar 

  36. Y. Liu, C.M. Ran, A.A. Siyal, Y.M. Song, Z.H. Jiang, J.J. Dai, P. Chtaeva, J. Fu, W Y Ao, Z. Y. Deng and T. H. Zhang, J. Hazard. Mater., 396, 122619 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. X. Y. He, Z. X. Liu, W. J. Niu, L. Yang, T. Zhou, D. Qin, Z. Y. Niu and Q.X. Yuan, Energy, 143, 746 (2018).

    Article  CAS  Google Scholar 

  38. T. Chen, Y. X. Zhang, H. T. Wang, W. J. Lu, Z. Y. Zhou, Y. C. Zhang and L. L. Ren, Bioresour. Technol., 164, 47 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. P. Sannigrahi, A. J. Ragauskas and G. A. Tuskan, Biofuel. Bioprod. Biorefin., 4, 209 (2010).

    Article  CAS  Google Scholar 

  40. M. E. Sánchez, J. A. Menéndez, A. Domínguez, J. J. Pis, O. Martínez and L. F. Calvo, Biomass Bioenergy, 33, 933 (2009).

    Article  CAS  Google Scholar 

  41. Z. G. Liu and G. H. Han, Fuel, 158, 159 (2015).

    Article  CAS  Google Scholar 

  42. Z. H. Wang, X. Q. Ma, Z. L. Yao, Q. H. Yu, Z. Wang and Y. S. Lin, Appl. Therm. Eng., 128, 662 (2018).

    Article  CAS  Google Scholar 

  43. W. D. C. Udayanga, A. Veksha, A. Giannis, G. Lisak and T. T. Lim, Energy Convers. Manag., 196, 1410 (2019).

    Article  CAS  Google Scholar 

  44. A. Zielifska, P. Oleszczuk, B. Charmas, J. S. Zieba and S. P. Patkowska, J. Anal. Appl. Pyrolysis, 112, 201 (2015).

    Article  CAS  Google Scholar 

  45. J. Pallarés, A. G. Cencerrado and I. Arauzo, Biomass Bioenergy, 115, 64 (2018).

    Article  CAS  Google Scholar 

  46. J. H. Windeatt, A. B. Ross, P. T. Williams, P. M. Forster, M. A. Nahil and S. Singh, J. Environ. Manage, 146, 189 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti and J. Rouquerol, Pure. Appl. Chem., 57, 603 (1985).

    Article  CAS  Google Scholar 

  48. A. Downie, A. Crosky and P. Munroe, Physical properties of biochar, in: Biochar for environmental management: science and technology, Earthscan, London (2009).

    Google Scholar 

  49. C. Jindarom, V. Meeyoo, B. Kitiyanan, T. Rirksomboon and P. Rangsunvigit, J. Chem. Eng.., 133, 239 (2007).

    Article  CAS  Google Scholar 

  50. E. Miliotti, D. Casini, L. Rosi, G. Lotti, A. M. Rizzo and D. Chiaramonti, Biomass Bioenergy, 139, 105593 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Funds for Young Scholars of China (51806033); National Key Technologies Research and Development Program (2018YFB0905104); Jilin Provincial Science and Technology Development Program (20190201096JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baizhong Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Xiong, X., Che, D. et al. Effects of sludge pyrolysis temperature and atmosphere on characteristics of biochar and gaseous products. Korean J. Chem. Eng. 38, 55–63 (2021). https://doi.org/10.1007/s11814-020-0685-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0685-0

Keywords

Navigation