Skip to main content
Log in

Facile fabrication of copper oxide modified activated carbon composite for efficient CO2 adsorption

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Copper oxide modified activated carbon (CuO/AC) composites for the CO2 capture were synthesized via a facile assembly strategy associated with a direct solid-state heat dispersion process by introducing CuO into AC using Cu(NO3)2 as the copper source. The synthesized CuO/AC composites with various CuO contents were characterized by powder X-ray diffraction, scanning electron microscopy and nitrogen adsorption-desorption measurement, and the CO2 adsorption performance was investigated. The characterization results indicate that the Cu(NO3)2 species was well dispersed into the AC pore channels and then converted to a highly dispersed CuO after the activation process. The adsorption results reveal that the CO2 adsorption performance can be significantly improved by introducing CuO onto the AC surfaces, and the CuO(0.6)/AC composite with a CuO loading of 0.6 mmol/g AC shows a high CO2 adsorption capacity and adsorption selectivity and displays an excellent reversibility. Additionally, the calculated adsorption heat values of CO2 on the CuO(0.6)/AC composite are in the range of 27.3 to 33.9 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. S. Zheng, D. Streimikiene, T. Balezentis, A. Mardani, F. Cavallaro and H. Liao, J. Clean. Prod., 234, 1113 (2019).

    Article  Google Scholar 

  2. Z. Wang, N. Goyal, L. Liu, D. C. W Tsang, J. Shang, W Liu and G. Li, Chem. Eng. J, 396, 125376 (2020).

    Article  CAS  Google Scholar 

  3. N. Li, X. Zhang, M. Shi and S. Zhou, Resour. Conserv. Recy., 121, 11 (2017).

    Article  Google Scholar 

  4. M. Zaman and J. H. Lee, Korean J. Chem. Eng., 30, 1497 (2013).

    Article  CAS  Google Scholar 

  5. J. L. Míguez, J. Porteiro, R. Pérez-Orozco, D. Patino and S. Rodríguez, Appl. Energy, 211, 1282 (2018).

    Article  CAS  Google Scholar 

  6. B. Liu, M. Zhang, X. Yang and T. Wang, J. Taiwan Inst. Chem. E., 103, 67 (2019).

    Article  CAS  Google Scholar 

  7. C. Manianglung, R. M. Pacia and Y. S. Ko, Korean J. Chem. Eng., 36, 1267 (2019).

    Article  CAS  Google Scholar 

  8. A. B. Rao and E. S. Rubin, Environ. Sci. Technol., 36, 4467 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. J. D. Figueroa, T. Fout, S. Plasynski and H. McIlvried, Int. J. Greenh. Gas Con., 2, 9 (2008).

    Article  CAS  Google Scholar 

  10. S. Bae, N. Zaini, K. S. N. Kamarudin, K. S. Yoo, J. Kim and M. R. Othman, Korean J. Chem. Eng., 35, 764 (2018).

    Article  CAS  Google Scholar 

  11. Q. Wang, J. Z. Luo, Z. Y Zhou and A. Borgna, Energy Environ. Sci., 4, 42 (2011).

    Article  CAS  Google Scholar 

  12. Y. Wang, T. Du, X. Fang, D. Meng, G. Li and L. Liu, Korean J. Chem. Eng., 35, 1642 (2018).

    Article  CAS  Google Scholar 

  13. F. Montagnaro, A. Silvestre-Albero, J. Silvestre-Albero, F. Rodríguez-Reinoso, A. Erto, A. Lancia and M. Balsamo, Micropor. Mesopor. Mater., 209, 157 (2015).

    Article  CAS  Google Scholar 

  14. S. Wang, Y. Xu, J. Miao, M. Liu, B. Ren, L. Zhang and Z. Liu, J. Clean. Prod., 253, 120023 (2020).

    Article  CAS  Google Scholar 

  15. C.S. Lee, Y.L. Ong, M.K. Aroua and WM. A. W Daud, Chem. Eng. J., 219, 558 (2013).

    Article  CAS  Google Scholar 

  16. H. Burri, R. Anjum, R. B. Gurram, H. Mitta, S. Mutyala and M. Jonnalagadda, Korean J. Chem. Eng., 36, 1482 (2019).

    Article  CAS  Google Scholar 

  17. J. Sreńscek-Nazzal and K. Kiełbasa, Appl. Surf. Sci., 494, 137 (2019).

    Article  CAS  Google Scholar 

  18. X. E. Hu, L. Liu, X. Luo, G. Xiao, E. Shiko, R. Zhang, X. Fan, Y. Zhou, Y. Liu, Z. Zeng and C. Li, Appl. Energy, 260, 114244 (2020).

    Article  CAS  Google Scholar 

  19. S. Mutyala, S.M. Yakout, S.S. Ibrahim, M. Jonnalagadda and H. Mitta, New J. Chem., 43, 9725 (2019).

    Article  CAS  Google Scholar 

  20. J. Zhang, R. Singh and P. A. Webley, Micropor. Mesopor. Mater., 111, 478 (2008).

    Article  CAS  Google Scholar 

  21. K. Upendar, A. Sri Hari Kumar, N. Lingaiah, K. S. Rama Rao and P.S. Sai Prasad, Int. J. Greenh. Gas Con., 10, 191 (2012).

    Article  CAS  Google Scholar 

  22. J. Ding, C. Yu, J. Lu, X. Wei, W. Wang and G. Pan, Appl. Energy, 263, 114681 (2020).

    Article  CAS  Google Scholar 

  23. B. Zhao, L. Ma, H. Shi, K. Liu and J. Zhang, J. CO2 Util., 25, 315 (2018).

    Article  CAS  Google Scholar 

  24. K. C. Chanapattharapol, S. Krachuamram and S. Youngme, Micropor. Mesopor. Mater., 245, 8 (2017).

    Article  CAS  Google Scholar 

  25. D. I. Jang and S. J. Park, Fuel, 102, 439 (2012).

    Article  CAS  Google Scholar 

  26. B.-J. Kim, K.-S. Cho and S.-J. Park, J. Colloid Interface Sci., 342, 575 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. M. Li, K. Huang, J. A. Schott, Z. Wu and S. Dai, Micropor. Mesopor. Mater., 249, 34 (2017).

    Article  CAS  Google Scholar 

  28. M. Sun, Q. Gu, A. Hanif, T. Wang and J. Shang, Chem. Eng. J., 370, 1450 (2019).

    Article  CAS  Google Scholar 

  29. N. Tlili, G. Grévillot and C. Vallières, Int. J. Greenh. Gas Control, 3, 519 (2009).

    Article  CAS  Google Scholar 

  30. F. Raganati, R. Chirone and P. Ammendola, Ind. Eng. Chem. Res., 59, 3593 (2020).

    Article  CAS  Google Scholar 

  31. F. Raganati, M. Alfe, V. Gargiulo, R. Chirone and P. Ammendola, Chem. Eng. J., 372, 529 (2019).

    Article  CAS  Google Scholar 

  32. J. Bonjour, J.-B. Chalfen and F. Meunier, Ind. Eng. Chem. Res., 41, 5802 (2002).

    Article  CAS  Google Scholar 

  33. R. T. Yang, Adsorbents: Fundamentals and applications, John Wiley & Sons, Hoboken (2003).

    Book  Google Scholar 

  34. P.-T. Huong and B.-K. Lee, Micropor. Mesopor. Mater., 241, 155 (2017).

    Article  CAS  Google Scholar 

  35. A. Somy, M. R. Mehrnia, H. D. Amrei, A. Ghanizadeh and M. Safari, Int. J. Greenh. Gas Con., 3, 249 (2009).

    Article  CAS  Google Scholar 

  36. K. Cho, J. Kim, H. T. Beum, T. Jung and S. S. Han, J. Hazard. Mater., 344, 857 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. F. Gao, Y. Wang, X. Wang and S. Wang, Adsorption, 22, 1013 (2016).

    Article  CAS  Google Scholar 

  38. H. M. F. Freundlich, J. Phys. Chem., 57, 385 (1906).

    CAS  Google Scholar 

  39. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).

    Article  CAS  Google Scholar 

  40. R. Sips, J. Chem. Phys., 16, 490 (1948).

    Article  CAS  Google Scholar 

  41. J. Toth, Acta Chem. Acad. Hung., 69, 311 (1971).

    CAS  Google Scholar 

  42. A. L. Myers and J. M. Prausnitz, AIChE J., 11, 121 (1965).

    Article  CAS  Google Scholar 

  43. P. Su, X. Zhang, Z. Xu, G. Zhang, C. Shen and Q. Meng, New J. Chem., 43, 17267 (2019).

    Article  CAS  Google Scholar 

  44. K. Pirzadeh, K. Esfandiari, A. A. Ghoreyshi and M. Rahimnejad, Korean J. Chem. Eng., 37, 513 (2020).

    Article  CAS  Google Scholar 

  45. J. Yin, J. Cai, C. Yin, L. Gao and J. Zhou, J. Environ. Chem. Eng., 4, 958 (2016).

    Article  CAS  Google Scholar 

  46. Y. Chen, H. Wu, D. Lv, W. Yang, Z. Qiao, Z. Li and Q. Xia, Energy Fuels, 32, 8676 (2018).

    Article  CAS  Google Scholar 

  47. S. Y. Lee and S. J. Park, J. Ind. Eng. Chem., 23, 1 (2015).

    Article  CAS  Google Scholar 

  48. M. G. Plaza, S. García, F. Rubiera, J. J. Pis and C. Pevida, Chem. Eng. J., 163, 41 (2010).

    Article  CAS  Google Scholar 

  49. J. A. Mason, K. Sumida, Z. R. Herm, R. Krishna and J. R. Long, Energy Environ. Sci., 4, 3030 (2011).

    Article  CAS  Google Scholar 

  50. S. Xiang, Y. He, Z. Zhang, H. Wu, W. Zhou, R. Krishna and B. Chen, Nat. Commun., 3, 954 (2012).

    Article  PubMed  CAS  Google Scholar 

  51. Y. Wu, Z. Lv, X. Zhou, J. Peng, Y. Tang and Z. Li, Chem. Eng. J., 355, 815 (2019).

    Article  CAS  Google Scholar 

  52. W Lou, J. Yang, L. Li and J. Li, J. Solid State Chem., 213, 224 (2014).

    Article  CAS  Google Scholar 

  53. Z. Zhou, L. Mei, C. Ma, F. Xu, J. Xiao, Q. Xia and Z. Li, Chem. Eng. J., 147, 109 (2016).

    Article  CAS  Google Scholar 

  54. L. Mei, T. Jiang, X. Zhou, Y. Li, H. Wang and Z. Li, Chem. Eng. J., 321, 600 (2017).

    Article  CAS  Google Scholar 

  55. J. McEwen, J.-D. Hayman and A. Ozgur Yazaydin, Chem. Phys., 412, 72 (2013).

    Article  CAS  Google Scholar 

  56. X. Xu, X. Zhao, L. Sun and X. Liu, J. Nat. Gas Chem., 17, 391 (2008).

    Article  CAS  Google Scholar 

  57. M. Hefti, D. Marx, L. Joss and M. Mazzotti, Micropor. Mesopor. Mater., 215, 215 (2015).

    Article  CAS  Google Scholar 

  58. F. Gao, S. Wang, G. Chen, J. Duan, J. Dong and W. Wang, Adsorption, 26, 701 (2020).

    Article  CAS  Google Scholar 

  59. Y. Belmabkhout and A. Sayari, Chem. Eng. Sci., 64, 3729 (2009).

    Article  CAS  Google Scholar 

  60. S. Beutekamp and P. Harting, Adsorption, 8, 255 (2002).

    Article  CAS  Google Scholar 

  61. P. Brea, J. A. Delgado, V. I. Águeda and M. A. Uguina, Chem. Eng. J., 355, 279 (2019).

    Article  CAS  Google Scholar 

  62. F. Raganati, R. Chirone and P. Ammendola, Chem. Eng. Res. Des., 133, 347 (2018).

    Article  CAS  Google Scholar 

  63. T. Pröll, G. Schöny, G. Sprachmann and H. Hofbauer, Chem. Eng. Sci, 141, 166 (2016).

    Article  CAS  Google Scholar 

  64. G. Schöny, F. Dietrich, J. Fuchs, T. Pröll and H. Hofbauer, Powder Technol., 316, 519 (2017).

    Article  CAS  Google Scholar 

  65. F. Raganati, R. Chirone and P. Ammendola, Ind. Eng. Chem. Res., 56, 12811 (2017).

    Article  CAS  Google Scholar 

  66. P. Ammendola, F. Raganati and R. Chirone, Fuel Process. Technol., 134, 494 (2015).

    Article  CAS  Google Scholar 

  67. F. Raganati, P. Ammendola and R. Chirone, Sep. Purif. Technol., 167, 24 (2016).

    Article  CAS  Google Scholar 

  68. W Liang, Z. Liu, J. Peng, X. Zhou, X. Wang and Z. Li, Energy Fuels, 33, 493 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Qingdao Science and Technology Plan Application Foundation Research Project (19-6-2-28-cg), the Natural Science Foundation of Shandong Province (ZR2018BB071) and the Shandong Provincial Key Research and Development Program (2019GSF109038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Gao.

Additional information

Conflict of Interest Statement

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Wang, F., Wang, S. et al. Facile fabrication of copper oxide modified activated carbon composite for efficient CO2 adsorption. Korean J. Chem. Eng. 38, 46–54 (2021). https://doi.org/10.1007/s11814-020-0684-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0684-1

Keywords

Navigation