Skip to main content

Advertisement

Log in

Carbon adsorbents for methane storage: genesis, synthesis, porosity, adsorption

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Adsorbed natural gas (ANG) storage systems are based on nanoporous adsorbents with a tailored porous structure. Activated carbons are among the most promising and widely used candidates for this application, which is explained by the availability and abundance of raw material resources. In the present work, several series of activated carbons prepared from various precursors (coconut shell, peat, polymers, silicon carbide, and mineral coal) by different routes of physical and thermochemical activation were considered in the context of the adsorbed natural gas storage applications. Based on the Dubinin theory of volume filling of micropores and BET method, the porous structure of these adsorbents was evaluated from standard adsorption isotherms. The XRD, SAXS, and SEM measurements revealed variations in the textural and morphological properties of the adsorbents and their dependence on the precursor and synthesis procedure. The pore sizes evaluated from the adsorption and SAXS data were compared. Experimental data on methane adsorption at the temperature of 303 K and pressures of 0.1, 3.5, and 10 MPa made it possible to identify the most effective adsorbents. It was shown that the adsorption properties of ACs prepared from peat and mineral coal are determined by surface chemistry inherited from the precursor and activating agent. In contrast, the adsorption performance of ACs from polymer and coconut shell depends solely on the pore volume and pore dimensions. The adsorption effectiveness of each AC varies with pressure as a function of textural properties. Thus, a selection of an optimal adsorbent should be adjusted for thermodynamical coditions of ANG system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

differential molar work of adsorption [kJ/mol]

a:

value of adsorption [mmol/g]

a0 :

limiting value of adsorption at the temperature T [K] [mmol/g]

E:

characteristic energy of gas adsorption [kJ/mol]

E0 :

characteristic energy of adsorption of standard vapor (benzene) [kJ/mol]

HCC :

distance between centers of carbon atoms of pore walls [nm]

HS :

average width of model slit-like micropores [nm]

I:

scattering intensity of x-rays at small angles [a.u.]

K:

coefficient of proportionality [dimensionless]

M:

molecular mass [g/mol]

m0 :

mass of regenerated adsorbent [g]

N:

total amount of gas introduced into the adsorption-measuring system [mmol]

n :

parameter in the Dubinin-Raduschkevich equation [dimensionless]

n:

exponent [dimensionless]

P:

pressure [Pa]

Pcr :

critical pressure [Pa]

P S :

pressureofsaturatedvapors[Pa]

PW :

maximal operational pressures of ANG system [Pa]

PX :

minimal residual pressure of methane in ANG system [Pa]

q:

scattering vector [nm−1]

R:

universal gas constant [J/(mol·K)]

RG :

radius of gyration of micropores [nm]

RGS :

radius of gyration of cross-section of a model cylindrical pore [nm]

RT :

radius of gyration of a model slit-like pore [nm]

r:

radius of a crystallite [nm]

SBET :

BET specific surface area [m2/g]

Sme :

specific surface area of mesopores [m2/g]

T:

temperature [K]

Tcr :

critical temperature [K]

T0 :

boiling point [K]

V:

total geometric volume of adsorption measuring system [cm3]

Vads :

volume of adsorbent with micropores [cm3]

VHe :

volume of adsorbent determined via helium pycnometry [cm3]

Wme :

specific mesopore volume [cm3/g]

W0 :

specific micropore volume [cm3/g]

Ws :

specific total pore volume [cm3/g]

x0 :

half-width of micropore [nm]

β :

coefficient of similarity for the gas under study [dimensionless]

γ :

ratio of crystallite radius to half-width of micropore [dimensionless]

δ gas :

density of gaseous phase [mmol/cm3]

θ :

angle of reflection (scattering) of X-rays in XRD (SAXS) [degrees]

λ :

wavelength of x-rays [nm]

λ Cu :

wavelength of monochromatic CuKα-radiation [nm]

ρ CH4 :

methane density in the slit-like pores with walls formed by graphene layers [g/cm3]

AC:

activated carbons

ANG:

adsorbed natural gas

EDX:

energy dispersive x-ray analysis

PVDC:

polyvinyl dichloride

PFR:

phenol-formaldehyde resin

SAXS:

small-angle x-ray scattering

SEC:

structural and energy characteristics

SEM:

scanning electron microscopy

TCA:

thermochemical activation

TD:

thermal decomposition

TVFM:

theory of volume filling of micropores

VGA:

vapor-gas activation

WVA:

water vapor activation

XRD:

x-ray diffraction

References

  1. A. Grint and S. T. Takagishi, Adsorbed Natural Gas (ANG) Research Conducted by Atlanta Gas Light Adsorbent Research Group (AGLARG). Final Report. (1990–1993). (Des Planes, IL: Gas Research Institute, End-Use Technology Development Division, 1994).

    Google Scholar 

  2. T. A. Makal, J.-R. Li, W. Lu and H.-C. Zhou, Chem. Soc. Rev., 41, 7761 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. A. Y. Tsivadze, O. E. Aksyutin, A. G. Ishkov, I. E. Men’shchikov, A. A. Fomkin, A. V. Shkolin, E. V. Khozina and V. A. Grachev, Russ. Chem. Rev., 87, 950 (2018).

    Article  CAS  Google Scholar 

  4. A. Y. Tsivadze, O. E. Aksyutin, A. G. Ishkov, M. K. Knyazeva, O. V. Solovtsova, I. E. Men’shchikov, A. A. Fomkin, A. V. Shkolin, E. V. Khozina and V. A. Grachev, Russ. Chem. Rev., 88, 925 (2019).

    Article  CAS  Google Scholar 

  5. K. V. Kumar, K. Preuss, M. M. Titirici and F. Rodríguez-Reinoso, Chem. Rev., 117, 1796 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. F. Rodríguez-Reinoso and K. Kaneko, in Nanoporous materials for gas storage, F. Rodríguez-Reinoso and K. Kaneko Eds., Springer Nature Singapore Pte Ltd, Singapore (2019).

  7. A. A. Fomkin, A. A. Pribylov, A. G. Tkachev, N. R. Memetov, A. V. Melezhik, A. E. Kucherova, I. N. Shubin, A. L. Pulin, A. V. Shkolin, I. E. Men’shchikov, S. A. Zhedulov, K. A. Murdmaa and S. D. Artamonova, Colloid J., 81, 607 (2019).

    Article  CAS  Google Scholar 

  8. A. Policicchio, E. Maccallini, R. G. Agostino, F. Ciuchi, A. Aloise and G. Giordano, Fuel, 104, 813 (2013).

    Article  CAS  Google Scholar 

  9. I. E. Men’shchikov, A. A. Fomkin, A. Y. Tsivadze, A. V. Shkolin, E. M. Strizhenov and E. V. Khozina, Adsorption J., 23, 327 (2017).

    Article  CAS  Google Scholar 

  10. H. Tanaka, M. El-Merraoui, W. A. Steele and K. Kaneko, Chem. Phys. Lett., 352, 334 (2002).

    Article  CAS  Google Scholar 

  11. M. D. Ganji, A. Mirnejad and A. Najafi, Sci. Technol. Adv. Mat., 11, 045001 (2010).

    Article  CAS  Google Scholar 

  12. X. Zhu and Y. P. Zhao, J. Phys. Chem. C, 118, 17737 (2014).

    Article  CAS  Google Scholar 

  13. K. M. Anuchin, A. A. Fomkin, A. P. Korotych and A. M. Tolmachev, Prot. Met. Phys. Chem. Surf., 50, 173 (2014).

    Article  CAS  Google Scholar 

  14. V. B. Fenelonov, Poristyi uglerod (Porous Carbon). Izd. Inst. Kataliza SO RAN, Novosibirsk (in Russian) (1995).

    Google Scholar 

  15. I. E. Men’shchikov, A. A. Fomkin, A. V. Shkolin, V. Yu. Yakovlev and E. V. Khozina, Russ. Chem. Bull., 67, 1814 (2018).

    Article  CAS  Google Scholar 

  16. E. Mahmoud, Surfaces, 3, 433 (2020).

    Article  CAS  Google Scholar 

  17. S. Brunauer, P. H. Emmett and E. Teller, J. Amer. Chem. Soc., 60, 309 (1938).

    Article  CAS  Google Scholar 

  18. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. RodrõÂguez-Reinoso, J. Rouquerol and K. S. W Sing, Pure Appl. Chem., 87, 1051 (2015).

    Article  CAS  Google Scholar 

  19. M. M. Dubinin, Prog. Surf. Memb. Sci., 9, 1 (1975).

    Article  CAS  Google Scholar 

  20. M. M. Dubinin, Carbon, 27, 457 (1989).

    Article  CAS  Google Scholar 

  21. A. G. G. Blanco, J. C. A. de Oliveira, R. López J. C. Moreno-Piraján, L. Giraldo, G. Zgrablich and K. Sapag, Colloids Surf. A Physicochem. Eng. Asp., 357, 74 (2010).

    Article  CAS  Google Scholar 

  22. R. Ruiz-Rosas, F. J. García-Mateos, M. C. Gutiérrez, J. Rodríguez-Mirasol and T. Cordero, Front. Mater., 6, 134 (2019).

    Article  Google Scholar 

  23. V. Bernal, L. Giraldo and J. C. Moreno-Piraján, J. Carbon Res., 4, 62 (2018).

    Article  CAS  Google Scholar 

  24. F. Rodriguez-Reinoso, in Introduction to carbon technologies, H. Marsh, E. A. Heintz and F. Rodriguez-Reinoso Eds., University of Alicante, Secretariado de Publicaciones, Alicante (1997).

  25. F. Rodriguez-Reinoso, M. Molina-Sabio and M. T. Gonzalez, Carbon, 33, 15 (1995).

    Article  CAS  Google Scholar 

  26. M. Molina-Sabio, M. T. Gonzalez, F. Rodriguez-Reinoso and A. Sepúlveda-Escribano, Carbon, 34, 505 (1996).

    Article  CAS  Google Scholar 

  27. MOVE Program Overview. Advanced Research Project Agency, US DOE, 2012; https://arpa-e.energy.gov/sites/default/files/documents/files/MOVEProgramOverview.pdf. Accessed 18.07.19.

  28. T. S. Hui and M. A. A. Zaini, Carbon Lett., 16, 275 (2015).

    Article  Google Scholar 

  29. M. T. Shirazani, H. Bakhshi, A. Rashidi and M. Taghizadeh, J. Environ. Chem. Eng., 8, 103910 (2020).

    Article  CAS  Google Scholar 

  30. N. S. Nasri, H. U. Sidik, M. A. A. Zaini, N. M. Rashid, Z. A. Majid, S. Chelliapan, T. Kumar, H. M. Zain, R. Mohsin and N. Zaini, Chem. Eng. Trans., 72, 61 (2019).

    Google Scholar 

  31. A. Aleghafouri, M. Mohsen-Nia, A. Mohajeri, M. Mahdyarfar and M. Asghari, Adsorpt. Sci. Technol., 30, 307 (2012).

    Article  CAS  Google Scholar 

  32. M. Bastos-Neto, D. V. Canabrava, A. E. B. Torres, E. Rodriguez-Castellón, A. Jiménez-López D. C. S. Azevedo and C. L. Cavalcante Jr., Appl. Surf. Sci., 253, 5721 (2007).

    Article  CAS  Google Scholar 

  33. E. M. Strizhenov, A. A. Fomkin, A. A. Zherdev and A. A. Pribylov, Prot. Met. Phys. Chem. Surf., 48, 614 (2012).

    Article  CAS  Google Scholar 

  34. E. M. Strizhenov, A. V. Shkolin, A. A. Fomkin, A. A. Pribylov, A. A. Zherdev and I. A. Smirnov, Prot. Met. Phys. Chem. Surf., 49, 521 (2013).

    Article  CAS  Google Scholar 

  35. A. A. Fomkin, A. A. Pribylov, K. O. Murdmaa, A. L. Pulin, A. V. Shkolin, I. E. Men’shchikov and S. A. Zhedulov, Prot. Met. Phys. Chem. Surf., 55, 413 (2019).

    Article  CAS  Google Scholar 

  36. G. Sdanghi, S. Schaefer, G. Maranzana, A. Celzard and V. Fierro, Int. J. Hydrogen Ener., In press (Available online 6 November 2019).

  37. A. A. Fomkin, I. E. Men’shchikov, A. A. Pribylov, V. V. Gur’yanov, A. V. Shkolin, D. S. Zaitsev and A. V. Tvardovskii, Colloid J., 79, 144 (2017).

    Article  CAS  Google Scholar 

  38. W. Djeridi, A. Ouederni, A. D. Wiersum, P. L. Llewellyn and L. El Mir, Mater. Lett., 99, 184 (2013).

    Article  CAS  Google Scholar 

  39. K. C. Kemp, S. B. Baek, W. G. Lee, M. Meyyappan and K. S. Kim, Nanotechnology, 38, 385602 (2015).

    Article  CAS  Google Scholar 

  40. D. C. Azevedo, J. C. S. Araújo, M. Bastos-Neto, A. E. B. Torres, E. F. Jaguaribe and C. L. Cavalcante, Micropor. Mesopor. Mater., 100, 361 (2007).

    Article  CAS  Google Scholar 

  41. J. E. Park, G. B. Lee, S. Y. Hwang, J. H. Kim, B. U. Hong, H. Kim and S. Kim, Appl. Sci., 8, 1596 (2018).

    Article  CAS  Google Scholar 

  42. V. M. Mukhin, A. V. Tarasov and V. N. Klushin, Aktivnye ugli Rossii (Activated Carbons of Russia), Metallurgiya, Moscow (in Russian) (2000).

    Google Scholar 

  43. V. M. Mukhin, I. D. Zubova, V. V. Gur’yanov, A. A. Kurilkin and V. S. Gostev, Sorbts. Khrom. Prots. (Sorp. & Chrom. Proc.), 9, 191 (in Russian) (2009).

    Google Scholar 

  44. G. Gatti, M. Errahali, L. Tei, M. Cossi and L. Marchese, Polymers, 11, 588 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  45. N. Álvarez-Gutiérrez, M. V. Gil, M. Martinez, F. Rubiera and C. Pevida, Energies, 9, 189 (2016).

    Article  CAS  Google Scholar 

  46. D. Lozano-Castello, D. Cazorla-Amoros and A. Linares-Solano, Energy Fuels, 16, 1321 (2002).

    Article  CAS  Google Scholar 

  47. J. Abdulsalam, J. Mulopo, B. Oboirien, S. Bada and R. Falcon, Int. J. Coal Sci. Technol., 6, 459 (2019).

    Article  CAS  Google Scholar 

  48. Y. Uraki, Y. Tamai, M. Ogawa, S. Gaman and S. Tokurad, BioResources, 4, 205 (2009).

    CAS  Google Scholar 

  49. D. Bergna, T. Hu, H. Prokkola, H. Romar and U. Lassi, Waste Biomass Valorization, 11, 2837 (2020).

    Article  CAS  Google Scholar 

  50. S.-H. Yeon, S. Osswald and Y. Gogotsi, J. Power Sources, 191, 560 (2009).

    Article  CAS  Google Scholar 

  51. M. Oschatz, L. Borchardt, I. Senkovska, N. Klein, M. Leistner and S. Kaskel, Carbon, 56, 139 (2013).

    Article  CAS  Google Scholar 

  52. M. E. Casco, M. Martínez-Escandell and E. Gadea-Ramos, Chem. Mater., 27, 959 (2015).

    Article  CAS  Google Scholar 

  53. A. P. Ramirez, S. Giraldol, M. Ulloa, E. Flórez and N. Y. Acelas, J. Phys.: Conf. Ser., 935, 012012 (2017).

    Google Scholar 

  54. Z. Hu and M. P. Srinivasan, Micropor. Mesopor. Mater., 43, 267 (2001).

    Article  CAS  Google Scholar 

  55. G. B. Kambarova and Sh. Sarymsakov, Solid Fuel Chem., 42, 183 (2008).

    Article  Google Scholar 

  56. J. de D. López-González, F. Martínez-Vilchez and F. Rodríguez-Reinoso, Carbon, 18, 413 (1980).

    Article  Google Scholar 

  57. A. Aygün, S. Yenisoy-Karakaş and I. Duman, Micropor. Mesopor. Mater., 66, 189 (2003).

    Article  CAS  Google Scholar 

  58. T. Zhang, W. P. Walawender and L. T. Fan, Bioresour. Technol., 101, 1983 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. M. A. Tadda, A. Ahsan, A. Shitu, M. ElSergany, T. Arunkumar, B. Jose, M. A. Razzaque and N. N. N. Daud, J. Adv. Civ. Eng. Pract. Res., 2(1), 7 (2016).

    Google Scholar 

  60. P. J. Rangari and P. Chavan, Int. J. Innov. Res. Sci. Eng. Technol., 6(4), 5829 (2017).

    Google Scholar 

  61. J. J. Kipling and R. B. Wilson, Trans. Farad. Soc., 56, 557 (1960).

    Article  CAS  Google Scholar 

  62. N. F. Fedorov, G. K. Ivakhnyuk, D. N. Gavrilov, V. V. Tetenov, G. N. Smetanin, V. V. Samonin, O. E. Babkin and Y. A. Zaitsev, in Carbon adsorbents and their industrial applications, Nauka, Moscow (1983).

    Google Scholar 

  63. N. F. Fedorov and V. V. Samonin, Russ. J. Appl. Chem., 71, 584 (1998).

    CAS  Google Scholar 

  64. A. V. Shkolin, A. A. Fomkin and V. A. Sinitsyn, Colloid J., 70, 849 (2008).

    Article  CAS  Google Scholar 

  65. V. V. Sychev, A. A. Vasserman, V. A. Zagoruchenko, A. D. Kozlov, G. A. Spiridonov and V. A. Tzymarnyi, Termodinamicheskie svoistva metana (Thermodynamic properties of methane). Izdatelstvo Standartov, Moscow (in Russian) (1979).

    Google Scholar 

  66. L. A. Feigin and D. I. Svergun, Structure analysis by small-angle x-ray and neutron scattering, Plenum Press, New York and London (1989).

    Google Scholar 

  67. O. Glatter and O. Kratky, Small-angle x-ray scattering, Academic Press, London (1982).

    Google Scholar 

  68. A. A. Shiryaev, A. M Voloshchuk, V. V. Volkov, A. A. Averin and S. D. Artamonova, J. Phys: Conf. Series, 848, 012009 (2017).

    Google Scholar 

  69. A. Guinier, Ann. Phys., 11, 161 (1939).

    Article  Google Scholar 

  70. I. E. Men’shchikov, A. A. Fomkin, A. Y. Tsivadze, A. V. Shkolin, E. M. Strizhenov and A. L. Pulin, Prot. Met. Phys. Chem. Surf., 51, 493 (2015).

    Article  CAS  Google Scholar 

  71. A. A. Fomkin, A. V. Shkolin, I. E. Men’shchikov, L. Pulin, A. A. Pribylov and I. A. Smirnov, J. Meas. Techn., 58, 1387 (2016).

    Article  CAS  Google Scholar 

  72. A. A. Pribylov, V. V. Serpinskii and S. M. Kalashnikov, Zeolites, 11, 846 (1991).

    Article  CAS  Google Scholar 

  73. I. E. Men’shchikov, A. A. Fomkin, A. B. Arabei, A. V. Shkolin and E. M. Strizhenov, Prot. Met. Phys. Chem. Surf., 52, 575 (2016).

    Article  CAS  Google Scholar 

  74. K. A. Rahman, W. S. Loh and K. S. Ng, Procedia Eng., 56, 118 (2013).

    Article  CAS  Google Scholar 

  75. E. P. Barrett, L. G. Joyner and P. H. Halenda, J. Am. Chem. Soc., 73, 373 (1951).

    Article  CAS  Google Scholar 

  76. A. M. Rutman and Y. A. Skakov, Sov. Phys. Cryst., 34, 338 (1989).

    Google Scholar 

  77. H. Fujimoto, Carbon, 41, 1585 (2003).

    Article  CAS  Google Scholar 

  78. M. M. Dubinin and G. M. Plavnik, Carbon, 6, 183 (1968).

    Article  CAS  Google Scholar 

  79. F. Rodríguez-Reinoso, C. Almansa and M. Molina-Sabio, J. Phys. Chem. B., 109, 20227 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The investigations were carried out with the use of equipment of the Center of Physical Methods of Investigations of the A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences.

Funding

The research was carried out within the State Assignment of the Russian Federation (Project No. 01201353185) and the plan of the RAS Scientific Council (Theme No. 20-03-460-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Men’shchikov.

Additional information

Credit Author Statement

Ilya E. Men’shchikov: Conceptualization, Investigation; Visualization, Writing- Original draft preparation; Andrey A. Shiryaev: Methodology, Investigation; Writing — Review & Editing; Andrey V. Shkolin: Resources, Methodology, Investigation, Project administration; Vladimir V. Vysotskii: Investigation, Visualization; Elena V. Khozina: Writing-Original draft preparation, Writing-Reviewing and Editing; Anatoly A. Fomkin: Supervision, Project administration; Writing-Reviewing and Editing; Funding acquisition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Men’shchikov, I., Shiryaev, A., Shkolin, A. et al. Carbon adsorbents for methane storage: genesis, synthesis, porosity, adsorption. Korean J. Chem. Eng. 38, 276–291 (2021). https://doi.org/10.1007/s11814-020-0683-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0683-2

Keywords

Navigation