Skip to main content
Log in

Modeling of the wet flue gas desulfurization system to utilize low-grade limestone

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Wet flue gas desulfurization was simulated to improve gypsum production using low-grade limestone. High-grade limestone with 94 wt% CaCO3 content is used for producing gypsum with 93 wt% purity, but owing to the resource depletion of high-grade limestone, low-grade limestone should be replaced as an alternative. However, low-grade limestone with CaCO3 purity of less than 94% contains impurities such as MgCO3, Al2O3, and SiO2, which reduce gypsum purity. To resolve this issue, a process involving mixing of both low-grade and high-grade limestone was simulated to predict the quantity of low-grade limestone that could be utilized. Many reactions like limestone dissolution, SOX absorption, and crystallization were considered and were simulated by different models in Aspen plus. For process optimization, the following constraints were set: 93 wt% gypsum purity, 94% desulfurization efficiency, and 3,710 kg/h total limestone usage, which maximized the mass flow of low-grade limestone. The maximum blending quantity of low-grade limestone for 2,100 kg high-grade limestone that satisfied the constraints was ∼1,610 kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Cheng and C. X. Zhang, Pol. J. Environ. Stud., 27, 481 (2018).

    Article  CAS  Google Scholar 

  2. M. A. Gostomczyk and W. Kordylewski, ARCH COMBUST, 30, 15 (2010).

    CAS  Google Scholar 

  3. E. K. Oh, J. Korea Society of Environmental Administration, 9, 187 (2003).

    Google Scholar 

  4. C. Carletti, C. Blasio, E. Mäkilä, J. Salonen and T. Westerlund, Ind. Eng. Chem. Res., 54, 9783 (2015).

    Article  CAS  Google Scholar 

  5. T. Recelj and J. Golob, Process Saf. Environ. Prot., 82, 371 (2004).

    Article  CAS  Google Scholar 

  6. R. Krzyżyńska and Y. Zhao, Polish J. Environ. Stud., 19, 1255 (2010).

    Google Scholar 

  7. L. E. Kallinikos, E. I. Farsari, D. N. Spartinos and N. G. Papayannakos, Fuel Process. Technol., 91, 1794 (2010).

    Article  CAS  Google Scholar 

  8. S. S. Park, H. S. Ahn, K. H. Kim, S. W. Yun and K. K. Park, J. Korea Soc. Waste Manag., 2010, 125 (2010).

    Google Scholar 

  9. H. S. Kim, Korea Patent, 10-2012-0018757 (2012).

  10. J. H. Ahn, Korea Patent, 10-2015-0061150 (2015).

  11. H. S. Kim, Y. I. Yun, H. K. Li and S. H. Kim, J. Korean Ind. Eng. Chem., 13, 468 (2002).

    CAS  Google Scholar 

  12. J. H. Kim, K. J. Tak and I. Moon, Ind. Eng. Chem. Res., 51, 10191 (2012).

    Article  CAS  Google Scholar 

  13. V. Russo, T. Salmi, C. Carletti, D. Murzin, T. Westerlund, R. Tesser and H. Grénman, Ind. Eng. Chem. Res., 56, 13254 (2017).

    Article  CAS  Google Scholar 

  14. S. Gu, B. Fu, T. Fujita and J. W. Ahn, Appl. Sci., 9, 2262 (2019).

    Article  CAS  Google Scholar 

  15. Y. Yin, Q. J. R Meteorol. Soc., 131, 221 (2005).

    Article  Google Scholar 

  16. S. S. Park, J. P. Hong, Y. M. Ahn, S. Y. Park and H. M. Uhm, J. Korean Soc. Environ. Eng., 22, 1407 (2000).

    Google Scholar 

  17. B. N. Kim, Trans. Korean Soc. Mech. Eng., A, 97 (2003).

    Google Scholar 

  18. J. Katolicky and M. Jicha, Heat Transf. Eng., KJ3, 57 (2007).

    Google Scholar 

  19. X. Ma, T. Kaneko, T. Tashimo, T. Yoshida and K. Kato, Chem. Eng. Sci., 55, 4643 (2000).

    Article  CAS  Google Scholar 

  20. K. J. Tak, I. K. Lee, H. E. Kwon, J. H. Kim, D. H. Ko and I. Moon, Ind. Eng. Chem. Res., 54, 9992 (2015).

    Article  CAS  Google Scholar 

  21. H. Jo, D. S. Uh, U. M. Choi and M. W. Han, Korean Chem. Eng. Res., 50, 270 (2012).

    Article  Google Scholar 

Download references

Acknowledgement

This study has been conducted with the support of the Korea Institute of Industrial Technology as “Development of Gas-phase pollutant removal technology using low temperature de-NOx catalyst and low energy-consuming CO2 absorbent based on quantum mechanics simulation (kitech EO-19-0011)” and “Development of AI Platform Technology for Smart Chemical Process (kitech JH-20-0005)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junghwan Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, J., Choi, Y., Kim, G. et al. Modeling of the wet flue gas desulfurization system to utilize low-grade limestone. Korean J. Chem. Eng. 37, 2085–2093 (2020). https://doi.org/10.1007/s11814-020-0639-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0639-6

Keywords

Navigation