Skip to main content
Log in

Photocatalytic water splitting using hygroscopic MgO modified TiO2/WO3 dual-layer photocatalysts

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

MgO modified TiO2/WO3 dual-layer photocatalysts (DLP) was synthesized by radio-frequency magnetron sputtering (RFMS). The influences of MgO on the properties and the performance of the prepared DLP were investigated. MgO modified TiO2 thin films were characterized by instrumental analysis such as XRD, AFM, SEM-EDS, and UV-visible absorption spectrometry. Their photoactivity was assessed by conducting photovoltammetry followed by splitting water in a twin-cell reactor, where hydrogen gas and oxygen gas were produced separately. The yield of H2 and O2 in the twin-cell reactor corresponded to the photovoltammetry results, indicating that MgO can significantly improve the photoactivity of DLP. The improvement is attributed primarily to the hygroscopic Nature of MgO, which can increase the amount of H2O molecules on the surface of TiO2 for carrying out the photoreaction. In addition, the incorporated MgO layer can also act as an insulator to suppress the electron leakage that occurred at the TiO2-water interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Momirlan and T. N. Veziroglu, Renew. Sust. Energy Rev., 6, 141 (2002).

    Article  CAS  Google Scholar 

  2. M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, Renew. Sust. Energy Rev., 11, 401 (2007).

    Article  CAS  Google Scholar 

  3. A. Fujishima and K. Honda, Nature, 238, 37 (1972).

    Article  CAS  Google Scholar 

  4. C.-W. Huang, V.-H. Nguyen, S.-R. Zhou, S.-Y. Hsu, J.-X. Tan and K. C. W. Wu, Sustain. Energy Fuels, 4, 504 (2020).

    Article  CAS  Google Scholar 

  5. S. G. Kumar and L. G. Devi, J. Phys. Chem. A, 115, 13211 (2011).

    Article  CAS  Google Scholar 

  6. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 293, 269 (2001).

    Article  CAS  Google Scholar 

  7. K. Domen, A. Kudo, T. Onishi, N. Kosugi and H. Kuroda, J. Phys. Chem., 90, 292 (1986).

    Article  CAS  Google Scholar 

  8. K. Gurunathan, P. Maruthamuthu and M. V. C. Sastri, Int. J. Hydrogen Energy, 22, 57 (1997).

    Article  CAS  Google Scholar 

  9. A. Kudo, H. Kato and S. Nakagawa, J. Phys. Chem. B, 104, 571 (1999).

    Article  Google Scholar 

  10. H. Kikuchi, M. Kitano, M. Takeuchi, M. Matsuoka M. Anpo and P. V. Kamat, J. Phys. Chem. B, 110, 5537 (2006).

    Article  CAS  Google Scholar 

  11. M. Kitano, M. Takeuchi, M. Matsuoka, J. M. Thomas and M. Anpo, Chem. Lett., 34, 616 (2005).

    Article  CAS  Google Scholar 

  12. C. H. Liao, C. W. Huang and J. C. S. Wu, Int. J. Hydrogen Energy, 37, 11632 (2012).

    Article  CAS  Google Scholar 

  13. C. H. Liao, C. W. Huang and J. C. S. Wu, Asia-Pac. J. Chem. Eng., 8, 283 (2013).

    Article  CAS  Google Scholar 

  14. M. Kitano, M. Takeuchi, M. Matsuoka, J. A. Thomas and M. Anpo, Catal. Today, 120, 133 (2007).

    Article  CAS  Google Scholar 

  15. H. Tada, Y. Kubo, M. Akazawa and S. Ito, Langmuir, 14, 2936 (1998).

    Article  CAS  Google Scholar 

  16. H. Tada, M. Yamamoto and S. Ito, Langmuir, 15, 3699 (1999).

    Article  CAS  Google Scholar 

  17. C. Anderson and A. Bard, J. Phys. Chem., 99, 9882 (1995).

    Article  CAS  Google Scholar 

  18. H. S. Jung, J. K. Lee, M. Nastasi, J. R. Kim, S. W. Lee, J. Y. Kim, J. S. Park, K. S. Hong and H. Shin, Appl. Phys. Lett., 88, 013107 (2006).

    Article  Google Scholar 

  19. S.-T. Bae, H. Shin, J. Y. Kim, H. S. Jung and K. S. Hong, J. Phys. Chem. C, 112, 9937 (2008).

    Article  CAS  Google Scholar 

  20. C. W. Huang, C. H. Liao, J. C. S. Wu, Y. C. Liu, C. L. Chang, C. H. Wu, M. Anpo, M. Matsuoka and M. Takeuchi, Int. J. Hydrogen Energy, 35, 12005 (2010).

    Article  CAS  Google Scholar 

  21. C. H. Liao, C. W. Huang and J. C. S. Wu, Int. J. Hydrogen Energy, 37, 11632 (2012).

    Article  CAS  Google Scholar 

  22. H. S. Jung, J.-K. Lee, M. Nastasi, S.-W. Lee, J.-Y. Kim, J.-S. Park, K. S. Hong and H. Shin, Langmuir, 21, 10332 (2005).

    Article  CAS  Google Scholar 

  23. M. Kitano, H. Kikuchi, T. Hosoda, M. Takeuchi, M. Matsuoka, T. Eura, M. Anpo and J. M. Thomas, Key Eng. Mater., 317, 823 (2006).

    Article  Google Scholar 

  24. H. S. Jung, J. K. Lee, K. S. Hong and H. J. Youn, J. Appl. Phys., 92, 2855 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported under grant number MOST 105-2221-E-002-206-MY3, 106-2218-E-992-304-MY2, and 108-3116-F-006-013 from the Ministry of Science and Technology (MOST), Taiwan. The authors also appreciate the Academia Sinica of Taiwan for partial support under the project AS-KPQ-106-DDPP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao-Wei Huang or Jeffrey Chi-Sheng Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CW., Liao, CH. & Wu, J.CS. Photocatalytic water splitting using hygroscopic MgO modified TiO2/WO3 dual-layer photocatalysts. Korean J. Chem. Eng. 37, 1352–1359 (2020). https://doi.org/10.1007/s11814-020-0603-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0603-5

Keywords

Navigation