Skip to main content

Non-catalytic oxidative desulfurization of gas condensate by ozone and process optimization using response surface methodology

Abstract

This study modelled and optimized the oxidative desulfurization of gas condensate with ozone, as a gaseous oxidant. Experiments in this study were non-catalytic, and sulfone extraction was done by acetone. Response surface methodology was applied for the experimental design, mathematical modeling, and optimization using Design-Expert® software. The influence of effective variables and their interaction on the response was also investigated. For the first time, non-catalytic ozonation of this feed was performed on the oxidative desulfurization process. The developed model properly fitted the experimental results. The accuracy of the model was confirmed, while this model predicted 95% desulfurization would result in the optimized conditions, and the actual value of desulfurization obtained was 95.8%. Further, the results indicated interaction between the superficial gas velocity of ozone and coefficient of oxidant-to-sulfur molar ratio. GC-SCD revealed that DBT was the most refractory component in comparison with the other sulfur components in the gas condensate. It was also found that 84.3% desulfurization occurred just with oxidation and sedimentation of sulfones and without solvent extraction.

This is a preview of subscription content, access via your institution.

References

  1. L. Kang, H. Liu, H. He and C. Yang, Fuel, 234, 1229 (2018).

    CAS  Google Scholar 

  2. M. A. Safa, R. Al-Majren, T. Al-Shamary, J. Park and X. Ma, Fuel, 194, 123 (2017).

    CAS  Google Scholar 

  3. K. Chen, X.M. Zhang, X.F. Yang, M.G. Jiao, Z. Zhou, M.H. Zhang, D. H. Wang and X. H. Bu, Appl. Catal. B, 238, 263 (2018).

    CAS  Google Scholar 

  4. M. Ghaedian, M. Bazmi, A. Shafeghat, A. K. Mohammadi, Z. Rabiei and F. Naderi, Pet. Coal, 55, 361 (2013).

    Google Scholar 

  5. I. V Babich and J. A. Moulijn, Fuel, 82, 607 (2003).

    CAS  Google Scholar 

  6. C. Yang, H. Ji, C. Chen, W. Ma and J. Zhao, Appl. Catal. B, 235, 207 (2018).

    CAS  Google Scholar 

  7. E. W Qian, J. Jpn. Pet. Inst., 51, 14 (2008).

    CAS  Google Scholar 

  8. Y. Zhang, G. Li, L. Kong and H. Lu, Fuel, 219, 103 (2018).

    CAS  Google Scholar 

  9. X. Ma, A. Zhou and C. Song, Catal. Today, 123, 276 (2007).

    CAS  Google Scholar 

  10. J. M. Campos-Martin, M. C. Capel-Sanchez, P. Perez-Presas and J. L. G. Fierro, J. Chem. Technol. Biotechnol., 85, 879 (2010).

    CAS  Google Scholar 

  11. M. Alibolandi, M. Ghaedian, A. Shafeghat, S. J. Royaee and J. T. Darian, J. Sci. I. R., 31, 13 (2020).

    Google Scholar 

  12. X. Han, A. Wang, X. Wang, X. Li, Y. Wang and Y. Hu, Catal. Commun., 42, 6 (2013).

    CAS  Google Scholar 

  13. J. Wang, L. Zhang, Y. Sun, B. Jiang, Y. Chen, X. Gao and H. Yang, Fuel Process. Technol., 177, 81 (2018).

    CAS  Google Scholar 

  14. A. Imtiaz, A. Waqas and I. Muhammad, Chin. J. Catal., 34, 1839 (2013).

    CAS  Google Scholar 

  15. X. Zhou, J. Li, X. Wang, K. Jin and W. Ma, Fuel Process. Technol., 90, 317 (2009).

    CAS  Google Scholar 

  16. S. W Li, R. M. Gao and J. S. Zhao, Fuel, 237, 840 (2019).

    CAS  Google Scholar 

  17. X. Zeng, X. Xiao, Y. Li, J. Chen and H. Wang, Appl. Catal. B, 209, 98 (2017).

    CAS  Google Scholar 

  18. R. Sundararaman, X. Ma and C. Song, Ind. Eng. Chem. Res., 49, 5561 (2010).

    CAS  Google Scholar 

  19. S.W. Li, J.R. Li, Y. Gao, L.L. Liang, R.L. Zhang and J.S. Zhao, Fuel, 197, 551 (2017).

    CAS  Google Scholar 

  20. J. T. Sampanthar, H. Xiao, J. Dou, T. Y. Nah, X. Rong and W. P. Kwan, Appl. Catal. B, 63, 85 (2006).

    CAS  Google Scholar 

  21. J. Wang, D. Zhao and K. Li, Energy Fuels, 24, 2527 (2010).

    CAS  Google Scholar 

  22. L. K. Wang, Y T. Hung, H. H. Lo and C. Yapijakis, Handbook of industrial and hazardous waste treatment, 2nd Ed., Taylor & Francis e-Library, New York (2006).

    Google Scholar 

  23. W Zhang, G. Xie, Y. Gong, D. Zhou, C. Zhang and Q. Ji, J. Chem. Eng. Jpn., 53, 68 (2020).

    CAS  Google Scholar 

  24. C. Ma, B. Dai, P. Liu, N. Zhou, A. Shi, L. Ban and H. Chen, J. Ind. Eng. Chem., 20, 2769 (2013).

    Google Scholar 

  25. B. Pouladi, M. A. Fanaei and G. Baghmisheh, J. Clean. Prod., 209, 965 (2019).

    CAS  Google Scholar 

  26. A. V Akopyan, D. A. Grigoriev, P. L. Polikarpova, E. A. Eseva, V. V Litvinova and A. V Anisimov, Petrol. Chem., 57, 904 (2017).

    CAS  Google Scholar 

  27. A. Akbari, M. Chamack and M. Omidkhah, J. Mater. Sci., 55, 6513 (2020).

    CAS  Google Scholar 

  28. L. Ban, P. Liu, C. Ma and B. Dai, Catal. Today, 211, 78 (2013).

    CAS  Google Scholar 

  29. P. Wu, Y. Wu, L. Chen, J. He, M. Hua, F. Zhu, X. Chu, J. Xiong, M. He, W Zhu and H. Li, Chem. Eng. J., 380, 122526 (2020).

    CAS  Google Scholar 

  30. W. J. M. Samaranayake, Y. Miyahara, T. Namihira, S. Katsuki, R. Hackaml and H. Akiyama, IEEE Trans. Dielectr. Electr. Insul., 7, 849 (2000).

    CAS  Google Scholar 

  31. B. Eliasson, M. Hirth and U. Kogelschatz, J. Phys. D: Appl. Phys., 20, 1421 (1987).

    CAS  Google Scholar 

  32. K. Sehested, H. Cotfltzen, J. Holcman, C. H. Flscher and E. J. Hart, Environ. Sci. Technol., 25, 1589 (1991).

    CAS  Google Scholar 

  33. D. L. Flamm, Environ. Sci. Technol., 11, 978 (1977).

    CAS  Google Scholar 

  34. W M. Chen, W Hong, J. F. Geng, X. S. Wu, W Ji, L. Y Li, L. Qui and X. Jin, Phys. C (Amsterdam, Neth.), 270, 349 (1996).

    CAS  Google Scholar 

  35. M. Mäkelä, Energy Convers. Manage, 151, 630 (2017).

    Google Scholar 

  36. D. C. Montgomery, Design and analysis of experiments, 6th Ed., Wiley, United States (2005).

    Google Scholar 

  37. F. Lin, Z. Wang, J. Shao, D. Yuan, Y. He, Y. Zhu and K. Cen, Chin. J. Catal., 38, 1270 (2017).

    CAS  Google Scholar 

  38. Z. Ismagilov, S. Yashnik, M. Kerzhentsev, V. Parmon, A. Bourane, F. M. Al-Shahrani, A. A. Hajji and O. R. Koseoglu, Catal. Rev. -Sci. Eng., 53, 199 (2011).

    CAS  Google Scholar 

  39. N. Kantarci, F. Borak and K. O. Ulgen, Process Biochem., 40, 2263 (2005).

    CAS  Google Scholar 

  40. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar and L.A. Escaleira, Talanta, 76, 965 (2008).

    CAS  PubMed  Google Scholar 

  41. E. Moaseri, A. Shahsavand and B. Bazubandi, Energy Fuels, 28, 825 (2014).

    CAS  Google Scholar 

  42. S. W Li, R. M. Gao, W Zhang, Y Zhang and J. S. Zhao, Fuel, 221, 1 (2018).

    Google Scholar 

  43. A. K. Dizaji, H. R. Mortaheb and B. Mokhtarani, Chem. Eng. J., 335, 362 (2018).

    Google Scholar 

  44. R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport phenomena, 2nd Ed., Wiley, United States (2001).

    Google Scholar 

  45. B. Wang, J. Zhu and H. Ma, J. Hazard. Mater., 164, 256 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Financial support from Research Institute of Petroleum Industry is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar Towfighi Darian.

Additional information

Competing Interests

The authors declare that they have no competing interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alibolandi, M., Darian, J.T., Ghaedian, M. et al. Non-catalytic oxidative desulfurization of gas condensate by ozone and process optimization using response surface methodology. Korean J. Chem. Eng. 37, 1867–1877 (2020). https://doi.org/10.1007/s11814-020-0595-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0595-1

Keywords

  • Oxidative Desulfurization
  • Gas Condensate
  • Ozone
  • Response Surface Methodology