Skip to main content

Advertisement

Log in

Preparation of nano-sized Mg-doped copper silicate materials using coal gangue as the raw material and its characterization for CO2 adsorption

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This work presents a simple method for the preparation of the Mg-doped nanocomposite copper silicates (Mgx-Cu1−x-SiO3) (x=0.25, 0.5, 0.75 and 0.9) using coal gangue waste as the silicon source for CO2 capture at low temperature. The as-prepared Mgx-Cu1−x-SiO3 was systemically characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller surface area analysis (BET). The results suggest that all Mgx-Cu1−x-SiO3 possess large surface areas, micropores and mesoporous structures composed of the agglomerates of small nanoparticles. They exhibit high CO2 adsorption capacity at 298.15 K under 1 bar, and that of Mg0.9-Cu0.1-SiO3 was the highest with the value of 16.73 cm3/g. The Freundlich isotherm model fits the CO2 adsorption isotherm well. Thermodynamic analysis indicates that the CO2 adsorption on Mg0.9-Cu0.1-SiO3 is exothermic (ΔH°<0), chaotic (ΔS°<0), and spontaneous (ΔG°<0). This work highlights the low-temperature adsorption behavior of silicate materials on CO2, which can provide some research basis for the utilization of silica in coal gangue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Yi, H. Q. Ma, H. G. Zhu, Z. C. Dong, Z. J. Su, Y. T. Zhang and Z. Chu, J. Build. Mater., 20, 134 (2017).

    Google Scholar 

  2. Y. J. Li, Y. Xing, X. Zhang and X. P. Yan, J. China Coal Soc, 38, 1215 (2013).

    CAS  Google Scholar 

  3. C. Yi, H. Q. Ma, H. Y. Chen, J. X. Wang, J. Shi, Z. H. Li and M. K. Yu, Constr. Build. Mater., 187, 318 (2018).

    Article  CAS  Google Scholar 

  4. C. C. Zhou, G. J. Liu, D. Wu, T. Fang, R. Wang and X. Fan, Chemosphere, 95, 193 (2014).

    Article  CAS  Google Scholar 

  5. Y. Tang and H. Wang, Powder Technol., 323, 486 (2018).

    Article  CAS  Google Scholar 

  6. L. Zhou, H. J. Zhou, Y. X. Hu, S. Yan and J. L. Yang, J. Environ. Manage., 234, 245 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. J. Geng, M. Zhou, T. Zhang, W. Wang, T. Wang, X. Zhou, X. Wang and H. Hou, Mater. Struct., 50, 5 (2017).

    Article  CAS  Google Scholar 

  8. Y. J. Gao, H. Y. Huang, W. J. Tang, X. Y. Liu, X. Y. Yang and J. B. Zhang, Micropor. Mesopor. Mater., 217, 210 (2015).

    Article  CAS  Google Scholar 

  9. T. T. Qian and J. H. Li, Adv. Powder Technol., 26, 98 (2015).

    Article  CAS  Google Scholar 

  10. J. Xiao, F. C. Li, Q. F. Zhong, H. G. Bao, B. J. Wang, J. D. Huang and Y. B. Zhang, Hydrometallurgy, 155, 118 (2015).

    Article  CAS  Google Scholar 

  11. P. Jamrunroj, S. Wongsakulphasatch, A. Maneedaeng, C. K. Cheng and S. Assabumrungrat, Powder Technol., 344, 208 (2019).

    Article  CAS  Google Scholar 

  12. O. Rahmani, R. Junin, M. Tyrer and R. Mohsin, Energy Fuel, 28, 5953 (2014).

    Article  CAS  Google Scholar 

  13. A. Sacco, J. CO2 Util., 27, 22 (2018).

    Article  CAS  Google Scholar 

  14. S. K Kaliyavaradhan and T. C. Ling, J. CO2 Util., 20, 234 (2017).

    Article  CAS  Google Scholar 

  15. S. X. Wang, R. J. Farrauto, S. Karp, J. H. Jeona and T. Erik, J. CO2Util., 27, 390 (2018).

    Article  CAS  Google Scholar 

  16. A. Álvarez, A. Bansode, A. Urakawa, A. V. Bavykina, T. A. Wezendonk, M. Makkee, J. Gascon and F. Kapteijn, Chem. Rev., 117, 9804 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. H. Wu, L. Gao, H. Jin and S. Li, Appl. Energy, 203, 571 (2017).

    Article  CAS  Google Scholar 

  18. A. E. Creamer and B. Gao, Environ. Sci. Technol., 50, 7276 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. D. Li, J. Zhou, Z. Zhang, L. Li, Y. Tian, Y. Lu, Y. Qiao, J. Li and L. Wen, Carbon, 114, 496 (2017).

    Article  CAS  Google Scholar 

  20. S. J. Chen, M. Zhu, Y. Fu, Y. X. Huang, Z. C. Tao and W. L. Li, Appl. Energy, 191, 87 (2017).

    Article  CAS  Google Scholar 

  21. K. Yoshihiro, S. Marie and E. Akira, Micropor. Mesopor. Mater., 219, 125 (2016).

    Article  CAS  Google Scholar 

  22. E. Kim, S. Hong, E. Jang, J. H. Lee, J. C. Kim, N. Choi, C. H. Cho, J. Nam, S. K. Kwak, A. C. K. Yip and J. Choi, J. Mater. Chem. A, 5, 11246 (2017).

    Article  CAS  Google Scholar 

  23. Y. Belmabkhout, V. Guillerm and M. Eddaoudi, Chem. Eng. J., 296, 386 (2016).

    Article  CAS  Google Scholar 

  24. S. Nandi, S. Haldar, D. Chakraborty and R. Vaidhyanathan, J. Mater. Chem. A, 5, 535 (2017).

    Article  CAS  Google Scholar 

  25. H. Du, L. Ma, X. Y. Liu, F. Zhang, X. Y. Yang, Y. Wu and J. B. Zhang, Energy Fuel, 32, 5374 (2018).

    Article  CAS  Google Scholar 

  26. S. C. Lee, M. J. Kim, Y. M. Kwon, H. J. Chae, M. S. Cho, Y. K. Park, H. M. Seo and J. C. Kim, Sep. Purif Technol., 120, 214 (2019).

    Google Scholar 

  27. K. Essaki, M. Kato and H. Uemoto, J. Mater. Sci., 21, 5017 (2005).

    Article  CAS  Google Scholar 

  28. J. J. Li, M. Hitch, I. M. Power and Y. Y. Pan, Minerals, 8, 147 (2018).

    Article  CAS  Google Scholar 

  29. J. J. Li and M. Hitch, Miner. Eng., 128, 69 (2018).

    Article  CAS  Google Scholar 

  30. Y. C. Hu, W. Q. Liu, Y. D. Yang, M. Y. Qua and H. L. Li, Chem. Eng. J., 359, 604 (2019).

    Article  CAS  Google Scholar 

  31. H. Xu, W. Cheng, X. Jin, G. Wang, H. Lu and H. Wang, Ind. Eng. Chem. Res., 52, 1886 (2013).

    Article  CAS  Google Scholar 

  32. M. Seggiani, M. Puccini and S. Vitolo, Int. J. Greenh. Gas. Control, 17, 25 (2013).

    Article  CAS  Google Scholar 

  33. S. Zhang, Q. Zhang, H. Wang, Y. Ni and Z. Zhu, Int. J. Hydrogen Energy, 39, 17913 (2014).

    Article  CAS  Google Scholar 

  34. J. Ortiz-Landeros, C. Gomez-Yanez, L. M. Palacios-Romero, E. Lima and H. Pfeiffer, J. Phys. Chem. A, 116, 3163 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. C. Gauer and W. Heschel, J. Mater. Sci., 41, 2405 (2006).

    Article  CAS  Google Scholar 

  36. X. X. Chen, Z. Xiong, Y. D. Qin, B. B. Gong, C. Tian, Y. C. Zhao, J. Y. Zhang and C. G. Zheng, Int. J. Hydrogen Energy, 41, 13077 (2016).

    Article  CAS  Google Scholar 

  37. Y. Wu, H. Du, Y. J. Gao, X. Y. Liu, T. Y. Yang, L. Zhao, X. Q. Yue, S. Zhang and J. B. Zhang, Fuel, 258, 116192 (2019).

    Article  CAS  Google Scholar 

  38. L. D. Gelb and K E. Gubbins, Langmuir, 15, 305 (1999).

    Article  CAS  Google Scholar 

  39. M. F. Freundlich, J. Phys. Chem., 57, 355 (1906).

    Google Scholar 

  40. R. Thiruvenkatachari, S. Su, H. An and X. X. Yu, Prog. Energ. Combust., 35, 438 (2009).

    Article  CAS  Google Scholar 

  41. M. Moradi, R. Karimzadeh and E. S. Moosavi, FueZ, 217, 467 (2018).

    CAS  Google Scholar 

  42. Z. H. Ye, D. Chen, Z. J. Pan, G. Q. Zhang, Y. Xia and X. Ding, J. Nat. Gas. Sci. Eng., 31, 658 (2016).

    Article  CAS  Google Scholar 

  43. P. Ammendola, F. Raganati and R. Chirone, Chem. Eng. J., 322, 302 (2017).

    Article  CAS  Google Scholar 

  44. L. Hauchhum and P. Mahanta, Int. J. Energy Environ. Eng., 5, 349 (2014).

    Article  CAS  Google Scholar 

  45. F. Raganati, M. Alfe, V. Gargiulo, R. Chirone and P. Ammendola, Chem. Eng. Res. Des., 134, 540 (2018).

    Article  CAS  Google Scholar 

  46. V. K. Singh and E. A. Kumar, Mater. Today, 5, 23033 (2018).

    Google Scholar 

  47. M. Dietemann, F. Baillon, F. Espitalier, R. Calvet, P. Accart, S. D. Confetto and M. Greenhill-Hooper, Chem. Eng. J., 215–216, 658 (2013).

    Article  CAS  Google Scholar 

  48. S. T. Oyama and Y. K. Lee, J. Catal., 258, 393 (2008).

    Article  CAS  Google Scholar 

  49. H. Y. Wang, Y. Y. Wang, X. Bai, H. Yang, J. P. Han, N. Lun, Y. X. Qi and Y. J. Bai, RSC Adv., 6, 105771 (2016).

    Article  CAS  Google Scholar 

  50. Y. Zhang, Y. W. Li, Y. J. Dai, J. Liu and Y. B. Xu, Ceram. Int., 44, 6626 (2018).

    Article  CAS  Google Scholar 

  51. Y. Zhang, Y. W. Li and Y. J. Dai, Ceram. Int., 44, 21365 (2018).

    Article  CAS  Google Scholar 

  52. Y. P. Ren, R. Y. Ding, H. R. Yue, S. Y. Tang, C. J. Liu, J. B. Zhao, W. Lin and B. Liang, Appl. Energy, 198, 250 (2017).

    Article  CAS  Google Scholar 

  53. D. Nied, K. E. Rasmussen, E. L’Hopital, J. Skibsted and B. Lothenbach, Cem. Concr. Res., 79, 323 (2016).

    Article  CAS  Google Scholar 

  54. H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grubel and H. Weller, Langmuir, 21, 1931 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. T. Li, A. J. Senesi and B. Lee, Chem. Rev., 116, 11128 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. H. H. Liu, H. L. Zhang, H. B. Xu, T. P. Lou, Z. T. Sui and Y. Zhang, Nanoscak, 10, 5246 (2018).

    Article  CAS  Google Scholar 

  57. H. H. Liu, H. L. Zhang, Y. Y. Hu, H. B. Xu, T. P. Lou, Z. T. Sui and Y. Zhang, J. Alloy Compd, 778, 803 (2019).

    Article  CAS  Google Scholar 

  58. L. S. Roselin and H. W. Chiu, J. Saudi. Chem. Soc, 22, 692 (2018).

    Article  CAS  Google Scholar 

  59. J. J. Yuan, P. X. Zhu, D. Noda and R. H. Jin, Beilstein J. Nanotechnol., 4, 793 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. S. Rahmani, M. Rezaei and F. Meshkani, J. Ind. Eng. Chem., 20, 1346 (2014).

    Article  CAS  Google Scholar 

  61. C. Gunathilake, R. S. Dassanayake, N. Abidi and M. Jaroniec, J. Mater. Chem. A, 4, 4808 (2016).

    Article  CAS  Google Scholar 

  62. B. Ghods, M. Rezaei and F. Meshkani, Ceram. Int., 42, 6883 (2016).

    Article  CAS  Google Scholar 

  63. W. Klinthong, C. H. Huang and C. S. Tan, Ind. Eng. Chem. Res., 55, 6481 (2016).

    Article  CAS  Google Scholar 

  64. X. Y. Liu, X. Y. Yang, H. Du, Y. Wu, X. S. Zhang and J. B. Zhang, Powder Technol., 333, 138 (2018).

    Article  CAS  Google Scholar 

  65. J. A. Mason, K. Sumida, Z. R. Herm, R. Krishna and J. R. Long, Energy Environ. Sci., 4, 3030 (2011).

    Article  CAS  Google Scholar 

  66. Y. H. Du, Z. J. Du, W. Zou, H. Q. Li, J. G. Mi and C. Zhang, J. Colloid Interface Sci., 409, 123 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. P. López-Aranguren, S. Builes, J. Fraile, L. F. Vega and C. Domingo, Ind. Eng. Chem. Res., 53, 15611 (2014).

    Article  CAS  Google Scholar 

  68. Y. N. Zheng, Q. Z. Li, C. C. Yuan, Q. L. Tao, Y. Zhao, G. Y. Zhang, J. F. Liu and G. Qi, Fuel, 230, 172 (2018).

    Article  CAS  Google Scholar 

  69. L. Chen, L. Zuo, Z. X. Jiang, S. Jiang, K. Y. Liu, J. Q. Tan and L. C. Zhang, Chem. Eng. J., 361, 559 (2019).

    Article  CAS  Google Scholar 

  70. B. J. Schindler and M. D. LeVan, Carbon, 46, 644 (2008).

    Article  CAS  Google Scholar 

  71. D. Hua, H. H. Yi, X. L. Tang, Q. F. Yu, P. Ning and L. P. Yang, Chem. Eng. J., 188, 77 (2012).

    Article  CAS  Google Scholar 

  72. H. Y. Hu, T. W. Zhang, J. D. Wiggins-Camacho, G. S. Ellis, M. D. Lewan and X. L. Zhang, Mar. Pet. Geol., 59, 114 (2015).

    Article  CAS  Google Scholar 

  73. B. Zhang, L. Y. Luan, R. T. Gao, F. Li, Y. J. Li and T. Wu, Colloids Surf. A, 520, 399 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work; was supported by the National Natural Science Foundation of China (Project No. 21466028), the Inner Mongolia Science and Technology Key Projects, the Program for Grassland Excellent Talents of Inner Mongolia Autonomous Region, and training plan of academic backbone in youth of Inner Mongolia University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianbin Zhang or Huayan Si.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2020_593_MOESM1_ESM.pdf

Preparation of nano-sized Mg-doped copper silicate materials using coal gangue as the raw material and its characterization for CO2 adsorption

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wu, Z., Liu, K. et al. Preparation of nano-sized Mg-doped copper silicate materials using coal gangue as the raw material and its characterization for CO2 adsorption. Korean J. Chem. Eng. 37, 1786–1794 (2020). https://doi.org/10.1007/s11814-020-0593-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0593-3

Keywords

Navigation