Skip to main content
Log in

Surface engineering of Pd-based nanoparticles by gas treatment for oxygen reduction reaction

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In many catalyst systems, including fuel cell applications, control of the catalyst surface composition is important for improving activity since catalytic reactions occur only at the surface. However, it is very difficult to modify the surface composition without changing the morphology of metal nanoparticles. Herein, carbon-supported Pd3Au1 nanoparticles with uniform size and distribution are fabricated by tert-butylamine reduction method. Pd or Au surface segregation is induced by simply heating as-prepared Pd3Au1 nanoparticles under CO or Ar atmosphere, respectively. Especially, CO-induced Pd surface segregation allows the alloy nanoparticles to have a Pd-rich surface, which is attributed to the strong CO binding energy of Pd. To demonstrate the change in surface composition of Pd3Au1 alloy catalyst with the annealing gas species, the oxygen reduction reaction performance is investigated and consequently, Pd3Au1 catalyst with the highest number of surface Pd atoms indicates excellent catalytic activity. Therefore, the present work provides insights into the development of metal-based alloys with optimum structures and surface compositions for various catalytic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. M. Markovic, T. J. Schmidt, V. Stamenkovic and P. N. Ross, Fuel Cells, 1, 105 (2001).

    Article  CAS  Google Scholar 

  2. S.-Y. Lee, N. Jung, D. Y. Shin, H.-Y. Park, D. Ahn, H.-J. Kim, J. H. Jang, D.-H. Lim and S. J. Yoo, Appl. Catal. B Environ., 206, 666 (2017).

    Article  CAS  Google Scholar 

  3. M. Sharma, N. Jung and S. J. Yoo, Chem. Mater., 30, 2 (2018).

    Article  CAS  Google Scholar 

  4. H. A. Gasteiger, S. S. Kocha, B. Sompalli and F. T. Wagner, Appl. Catal. B Environ., 56, 9 (2005).

    Article  CAS  Google Scholar 

  5. H. Sung, M. Sharma, J. Jang, S.-Y. Lee, M.-G. Choi, K. Lee and N. Jung, Nanoscale, 11, 5038 (2019).

    Article  CAS  Google Scholar 

  6. M. Sharma, J.-H. Jang, D. Y. Shin, J. A. Kwon, D.-H. Lim, D. Choi, H. Sung, J. Jang, S.-Y. Lee, K. Y. Lee, H.-Y. Park, N. Jung and S. J. Yoo, Energy Environ. Sci., 12, 2200 (2019).

    Article  CAS  Google Scholar 

  7. H. Erikson, A. Sarapuu, K. Tammeveski, S.-G. Jose and J. M. Feliu, Electrochem. Commun., 13, 734 (2011).

    Article  CAS  Google Scholar 

  8. N. Arjona, M. Guerra-Balcázar, L. Ortiz-Frade, G. Osorio-Monreal, L. Álvarez-Contreras, J. Ledesma-Garcíab and L. G. Arriaga, J. Mater. Chem. A, 1, 15524 (2013).

    Article  CAS  Google Scholar 

  9. L. Zhang, Q. Chang, H. Chen and M. Shao, Nano Energy, 29, 198 (2016).

    Article  CAS  Google Scholar 

  10. S.-Y. Lee, N. Jung, J. Cho, H.-Y. Park, J. Ryu, I. Jang, H.-J. Kim, E. Cho, Y.-H. Park, H. C. Ham, J. H. Jang and S. J. Yoo, ACS Catal., 4, 2402 (2014).

    Article  CAS  Google Scholar 

  11. S. Han, G. Chae and J. S. Lee, Korean J. Chem. Eng., 33, 1799 (2016).

    Article  CAS  Google Scholar 

  12. Z. Liu, G. Fu, J. Li, Z. Liu, L. Xu, D. Sun and Y. Tang, Nano Res., 11, 4686 (2018).

    Article  CAS  Google Scholar 

  13. G. Ramos-Sánchez, H. Yee-Madeira and O. Solorza-Feria, Int. J. Hydrogen Energy, 33, 3596 (2008).

    Article  Google Scholar 

  14. H. Ye, Y. Li, J. Chen, J. Sheng, X.-Z. Fu, R. Sun and C.-P. Wong, J. Mater. Sci., 53, 15871 (2018).

    Article  CAS  Google Scholar 

  15. F. Gao and D. W. Goodman, Chem. Soc. Rev., 41, 8009 (2012).

    Article  CAS  Google Scholar 

  16. P. Liu and J. K. Nørskov, Phys. Chem. Chem. Phys., 3, 3814 (2001).

    Article  CAS  Google Scholar 

  17. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney and A. Nilsson, Nat. Chem., 2, 454 (2010).

    Article  CAS  Google Scholar 

  18. A. K. Singh and Q. Xu, ChemCatChem, 5, 652 (2013).

    Article  CAS  Google Scholar 

  19. V. S. Kumar, S. Kummari, K. Y. Goud, M. Satyanarayana and K. V. Gobi, Int. J. Hydrogen Energy, 45, 1018 (2020).

    Article  Google Scholar 

  20. L. Y. Chen, N. Chen, Y. Hou, Z. C. Wang, S. H. Lv, T. Fujita, J. H. Jiang, A. Hirata and M. W. Chen, ACS Catal., 3, 1220 (2013).

    Article  CAS  Google Scholar 

  21. H. Erikson, A. Sarapuu, J. Kozlova, L. Matisen, V. Sammelselg and K. Tammeveski, Electrocatalysis, 6, 77 (2015).

    Article  CAS  Google Scholar 

  22. W. Yan, Z. Tang, L. Wang, Q. Wang, H. Yang and S. Chen, Int. J. Hydrogen Energy, 45, 1018 (2020).

    Article  Google Scholar 

  23. P. Paalanen, B. M. Weckhuysen and M. Sankar, Catal. Sci. Technol., 3, 2869 (2013).

    Article  CAS  Google Scholar 

  24. Z. Yin, M. Chi, Q. Zhu, D. Ma, J. Sun and X. Bao, J. Mater. Chem. A, 1, 9157 (2013).

    Article  CAS  Google Scholar 

  25. W. Jiao, C. Chen, W. You, G. Chen, S. Xue, J. Zhang, J. Liu, Y. Feng, P. Wang, Y. Wang, H. Wen and R. Che, Appl. Catal. B Environ., 262, 118298 (2020).

    Article  CAS  Google Scholar 

  26. V. K. Kumikov and Kh. B. Khokonov, J. Appl. Phys., 54, 1346 (1983).

    Article  CAS  Google Scholar 

  27. L. Z. Mezey and J. Giber, Appl. Phys. A: Solids Surf., 35, 87 (1984).

    Article  Google Scholar 

  28. J. Zhang, H. Jin, M. B. Sullivan, F. C. H. Lim and P. Wu, Phys. Chem. Chem. Phys., 11, 1441 (2009).

    Article  CAS  Google Scholar 

  29. J. Greeley and M. Mavrikakis, Catal. Today, 111, 52 (2006).

    Article  CAS  Google Scholar 

  30. A. Patterson, Phys. Rev., 56, 978 (1939).

    Article  CAS  Google Scholar 

  31. P. A. P. Nascente, S. G. C. De castro, R. Landers and G. G. Kleiman, Phys. Rev. B, 43, 4659 (1991).

    Article  CAS  Google Scholar 

  32. N. Hoshi, K. Kida, M. Nakamura, M. Nakada and K. Osada, J. Phys. Chem. B, 110, 12480 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Chungnam National University (2019-2020) and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. 2018R1C1B6007453, 2018M1A2A2061991, 2018M1A2A2061975).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Namgee Jung or Sung Jong Yoo.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeffery, A.A., Lee, SY., Min, J. et al. Surface engineering of Pd-based nanoparticles by gas treatment for oxygen reduction reaction. Korean J. Chem. Eng. 37, 1360–1364 (2020). https://doi.org/10.1007/s11814-020-0586-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0586-2

Keywords

Navigation