Skip to main content
Log in

Development of highly selective In2O3/ZrO2 catalyst for hydrogenation of CO2 to methanol: An insight into the catalyst preparation method

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study explored the potential of In2O3/ZrO2 catalyst for direct CO2 hydrogenation to methanol. Despite the excellent properties proven by density functional theory (DFT) studies, the experimental works on this catalyst are still very limited. In this study, In2O3/ZrO2 catalysts were synthesized via wetness impregnation (In2O3/ZrO2(WI)), citric acid-based sol-gel method (In2O3/ZrO2(SG)) and deposition-precipitation assisted by urea hydrolysis (In2O3/ZrO2(UH)). Results indicated the impressive effect of preparation method on the catalytic activity where In2O3/ZrO2(SG) presented superior catalytic performance, followed by In2O3/ZrO2(UH) and In2O3/ZrO2(WI), with the CO2 conversion of 16.23%, methanol selectivity of 94.39% and STY of 0.95 gmethanol/gcat·h. To unravel the structure-function relationship, several characterization techniques including XRD, HR-TEM, SEM-EDX, H2-TPR, CO2-TPD, N2 adsorption-desorption isotherm and XPS were implemented to analyze the developed catalysts. The analyses indicated that the excellent performance of In2O3/ZrO2 (SG) was due to its smaller crystallite size, strong metal-support interaction, high reducibility and high concentration of basic sites and oxygen vacancies on the catalyst surface. Time-on-stream stability test showed that In2O3/ZrO2 (SG) catalyst could sustain its high activity and selectivity within 100 h, signifying the high potential of this catalyst for direct hydrogenation of CO2 to methanol with minimum side reactions and deactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Jadhav, P. D. Vaidya, B. M. Bhanage and J. B. Joshi, Chem. Eng. Res. Des., 92, 2557 (2014).

    Article  CAS  Google Scholar 

  2. C. Temvuttirojn, Y. Poo-Arporn, N. Chanlek, C. K. Cheng, C. C. Chong, J. Limtrakul and T. Witoon, Ind. Eng. Chem. Res., 59, 5525 (2020).

    Article  CAS  Google Scholar 

  3. M. F. Hertrich and M. Beller, in: Met. Hydrog. CO2 into Methanol, Springer International Publishing, Cham, Switzerland (2018).

    Google Scholar 

  4. Y. Zhang, L. Zhong, H. Wang, P. Gao, X. Li, S. Xiao, G. Ding, W. Wei and Y. Sun, J. CO2 Util., 15, 72 (2016).

    Article  CAS  Google Scholar 

  5. J. Ye, C. Liu, D. Mei and Q. Ge, ACS Catal., 3, 1296 (2013).

    Article  CAS  Google Scholar 

  6. K. Sun, Z. Fan, J. Ye, J. Yan, Q. Ge, Y. Li, W. He, W. Yang and C. J. Liu, J. CO2 Util., 12, 1 (2015).

    Article  CAS  Google Scholar 

  7. O. Martin, A. J. Martín, C. Mondelli, S. Mitchell, T. F. Segawa, R. Hauert, C. Drouilly, D. Curulla-Ferré and J. Pérez-Ramírez, Angew. Chem. Int. Ed., 55, 6261 (2016).

    Article  CAS  Google Scholar 

  8. M. K. Koh, Y. J. Wong, S. P. Chai and A. R. Mohamed, J. Ind. Eng. Chem., 62, 156 (2018).

    Article  CAS  Google Scholar 

  9. M. Zhang, M. Dou and Y. Yu, Appl. Surf. Sci., 433, 780 (2018).

    Article  CAS  Google Scholar 

  10. M. Liu, Y. Yi, L. Wang, H. Guo and A. Bogaerts, Catalysts, 9, 275 (2019).

    Article  CAS  Google Scholar 

  11. M. Dou, M. Zhang, Y. Chen and Y. Yu, Surf. Sci., 672–673, 7 (2018).

    Article  CAS  Google Scholar 

  12. T. Numpilai, P. Kidkhunthod, C. K. Cheng, C. Wattanakit, M. Chareonpanich, J. Limtrakul and T. Witoon, Catal. Today, in press (2020).

  13. K. T. Jung and A. T. Bell, Catal. Lett., 80, 63 (2002).

    Article  CAS  Google Scholar 

  14. S. Natesakhawat, J. W. Lekse, J. P. Baltrus, P. R. Ohodnicki, B. H. Howard, X. Deng and C. Matranga, ACS Catal., 2, 1667 (2012).

    Article  CAS  Google Scholar 

  15. M. C. Silaghi, A. Comas-Vives and C. Copéret, ACS Catal., 6, 4501 (2016).

    Article  CAS  Google Scholar 

  16. A. Karelovic, G. Galdames, J. C. Medina, C. Yévenes and Y. Barra, J. Catal., 369, 415 (2019).

    Article  CAS  Google Scholar 

  17. B. Akbari, M. P. Tavandashti and M. Zandrahimi, Iran. J. Mater. Sci. Eng., 8, 48 (2011).

    CAS  Google Scholar 

  18. F. Jaouen, F. Charreteur and J. P. Dodelet, in: Carbon Struct. Act. Non-Noble Catal. Oxyg. Reduct. PEMFC, 176 (2005).

  19. D. Allam, S. Bennici, L. Limousy and S. Hocine, Comptes Rendus Chim., 2–3, 227 (2019).

    Article  CAS  Google Scholar 

  20. B. Ouyang, W. Tan and B. Liu, Catal. Commun., 95, 36 (2017).

    Article  CAS  Google Scholar 

  21. H. P. Decolatti, A. Martínez-Hernández, L. B. Gutiérrez, G. A. Fuentes and J. M. Zamaro, Micropor. Mesopor. Mater., 145, 41 (2011).

    Article  CAS  Google Scholar 

  22. J. Wang, A. Zhang, X. Jiang, C. Song and X. Guo, J. CO2 Util., 27, 81 (2018).

    Article  CAS  Google Scholar 

  23. S. Li, Y. Wang, B. Yang and L. Guo, Appl. Catal. A Gen., 571, 51 (2018).

    Article  CAS  Google Scholar 

  24. N. Rui, Z. Wang, K. Sun, J. Ye, Q. Ge and C. Liu, Appl. Catal. B Environ., 218, 488 (2017).

    Article  CAS  Google Scholar 

  25. N. Le-Phuc, T. V. Tran, P. N. Thuy, L. H. Nguyen and T. T. Trinh, React. Kinet. Mech. Catal., 124, 171 (2018).

    Article  CAS  Google Scholar 

  26. G. Wang, D. Mao, X. Guo and J. Yu, Int. J. Hydrogen Energy, 44, 4197 (2019).

    Article  CAS  Google Scholar 

  27. P. Gao, H. Yang, L. Zhang, C. Zhang, L. Zhong, H. Wang, W. Wei and Y. Sun, J. CO2 Util., 16, 32 (2016).

    Article  CAS  Google Scholar 

  28. C. I. Ezeh, X. Yang, J. He, C. Snape and X. M. Cheng, Ultrason. Sonochem., 42, 48 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. N. Akkharaphatthawon, N. Chanlek, C. K. Cheng, M. Chareonpanich, J. Limtrakul and T. Witoon, Appl. Surf. Sci., 489, 278 (2019).

    Article  CAS  Google Scholar 

  30. I. Ud, M. S. Shaharun, A. Naeem, S. Tasleem and M. Ra, Catal. Today, 21, 145 (2017).

    Google Scholar 

  31. R. R. Krishnan, V. S. Kavitha, S. M. C. Kumar, K. G. Gopchandran and M. V. P. Pillai, Mater. Sci. Semicond. Process., 93, 134 (2019).

    Article  CAS  Google Scholar 

  32. Y. Wang, S. Kattel, W. Gao, K. Li, P. Liu, J. G. Chen and H. Wang, Nat. Commun., 10, 1166 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. W. Wang, Z. Qu, L. Song and Q. Fu, J. Energy Chem., 40, 22 (2020).

    Article  CAS  Google Scholar 

  34. K. Samson, M. Sliwa, R. P. Socha, K. Góra-Marek, D. Mucha, D. Rutkowska-Zbik, J. F. Paul, M. Ruggiero-Mikoajczyk, R. Grabowski and J. Soczyński, ACS Catal., 4, 3730 (2014).

    Article  CAS  Google Scholar 

  35. W. Wang, Z. Qu, L. Song and Q. Fu, J. Energy Chem., 40, 22 (2020).

    Article  CAS  Google Scholar 

  36. K. Li and J. G. Chen, ACS Catal., 9, 7480 (2019).

    Google Scholar 

  37. K. V. R. Chary, G. V. Sagar, C. S. Srikanth and V. V. Rao, J. Phys. Chem. B, 111, 543 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. A. Rajaeiyan and M. M. Bagheri-Mohagheghi, Adv. Mater. Sci. Eng., 1, 176 (2013).

    CAS  Google Scholar 

  39. F. Davar, A. Hassankhani and M. R. Loghman-Estarki, Ceram. Int., 39, 2933 (2013).

    Article  CAS  Google Scholar 

  40. G. Wang, D. Mao, G. Xiaoming and Y. Jun, Appl. Surf. Sci., 456, 403 (2018).

    Article  CAS  Google Scholar 

  41. T. Phongamwong, U. Chantaprasertporn, T. Witoon, T. Numpilai, P. Yingyot, W. Limphirat, W. Donphai, P. Dittanet, M. Chareonpanich and J. Limtrakul, Chem. Eng. J., 316, 692 (2017).

    Article  CAS  Google Scholar 

  42. A. Bavykina, I. Yarulina, A. J. Al Abdulghani, L. Gevers, M. N. Hedhili, X. Miao, A. R. Galilea, A. Pustovarenko, A. Dikhtiarenko, A. Cadiau, A. Aguilar-Tapia, J. Hazemann, S. M. Kozlov, S. Oud-Chikh, L. Cavallo and J. Gascon, ACS Catal., 8, 6910 (2019).

    Article  CAS  Google Scholar 

  43. A. M. Hengne, A. K. Samal, L. R. Enakonda, M. Harb, L. E. Gevers, D. H. Anjum, M. N. Hedhili, Y. Saih, K. W. Huang and J. M. Basset, ACS Omega, 3, 3688 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. L. Yao, X. Xhen, Y. Pan and Z. Peng, J. Catal., 372, 74 (2019).

    Article  CAS  Google Scholar 

  45. C. Chou and R. Lobo, Appl. Catal. A Gen., 583, 117 (2019).

    Article  CAS  Google Scholar 

  46. T. Witoon, T. Numpilai, T. Phongamwong, W. Donphai, C. Boonyuen, C. Warakulwit, M. Chareonpanich and J. Limtrakul, Chem. Eng. J., 334, 1781 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Long-Term Research Grant Scheme (LRGS NanoMITe) from Ministry of Education Malaysia [grant number 203/PJKIMIA/6720009]. The authors also gratefully acknowledge the Institute of Scientific and Industrial Research (ISIR), Osaka University for valuable help in HR-TEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Rahman Mohamed.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2020_573_MOESM1_ESM.pdf

Development of highly selective In2O3/ZrO2 catalyst for hydrogenation of CO2 to methanol: An insight into the catalyst preparation method

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zain, M.M., Mohammadi, M., Kamiuchi, N. et al. Development of highly selective In2O3/ZrO2 catalyst for hydrogenation of CO2 to methanol: An insight into the catalyst preparation method. Korean J. Chem. Eng. 37, 1680–1689 (2020). https://doi.org/10.1007/s11814-020-0573-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0573-7

Keywords

Navigation