Skip to main content

ZnO/conducting polymer bilayer via sequential spin-coating for enhanced UV sensing

Abstract

Zinc oxide (ZnO) has been widely investigated as an important ultraviolet (UV) sensing material in view of its wide band gap (~3.4 eV). However, the fabrication of continuous thin films of ZnO generally requires complex, time-consuming, and expensive processes, such as sputtering and atomic layer deposition. Herein, we demonstrate a bilayer film consisting of a conducting polymer and ZnO nanoparticles sequentially deposited using a simple, rapid, and inexpensive two-step spin-coating process. In this approach, it is not necessary to have a continuous ZnO nanoparticle film as the active layer, because the conducting polymer deposited under the ZnO nanoparticles acts as a conductive and continuous supporting layer for the particles. Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT: PSS) is used as the auxiliary layer to promote the efficient transport of photo-carriers generated from ZnO nanoparticles under UV light. As a result, under UV light (365 nm), photocurrents obtained from a ZnO/PEDOT: PSS bilayer film are significantly higher (∼20 times) than that from a ZnO layer for a given voltage bias. The photoelectric performance can be further tuned by controlling the speed of spin-coating in the deposition of ZnO nanoparticles. The stability and photo response (rise and decay time) of the ZnO/PEDOT: PSS bilayer film under the repeated on-off condition are also reported.

This is a preview of subscription content, access via your institution.

References

  1. S. Zhang, L. Cai, T. Wang, R. Shi, J. Miao, L. Wei, Y. Chen, N. Sepúlveda and C. Wang, Sci. Rep., 5, 17883 (2015).

    Article  CAS  Google Scholar 

  2. Y.-Q. Yu, L.-B. Luo, M.-Z. Wang, B. Wang, L.-H. Zeng, C.-Y. Wu, J.-S. Jie, J.-W. Liu, L. Wang and S.-H. Yu, Nano Res., 8, 1098 (2015).

    Article  CAS  Google Scholar 

  3. A. G. Ardakani, M. Pazoki, S. M. Mahdavi, A. R. Bahrampour and N. Taghavinia, Appl. Surf. Sci., 258, 5405 (2012).

    Article  Google Scholar 

  4. J. Kim, K. Y. Shin, M. H. Raza, N. Pinna and Y. E. Sung, Korean J. Chem. Eng., 36, 1157 (2019).

    Article  CAS  Google Scholar 

  5. M. Farzadkia, K. Rahmani, M. Gholami, A. Esrafili, A. Rahmani and H. Rahmani, Korean J. Chem. Eng., 31, 2014 (2014).

    Article  CAS  Google Scholar 

  6. Y. S. Seo and S. G. Oh, Korean J. Chem. Eng., 36, 2118 (2019).

    Article  CAS  Google Scholar 

  7. K. Yu, Y. Zhang, F. Xu, Q. Li, Z. Zhu and Q. Wan, Appl. Phys. Lett., 88, 153123 (2006).

    Article  Google Scholar 

  8. H. Seong, J. Yun, J. H. Jun, K. Cho and S. Kim, Nanotechnology, 20, 245201 (2009).

    Article  Google Scholar 

  9. Y. Liu, N. Wei, Q. Zeng, J. Han, H. Huang, D. Zhong, F. Wang, L. Ding, J. Xia and H. Xu, Adv. Opt. Mater., 4, 238 (2016).

    Article  CAS  Google Scholar 

  10. X. Liu, H. Du, P. Wang, T.-T. Lim and X. W. Sun, J. Mater. Chem. C., 2, 9536 (2014).

    Article  CAS  Google Scholar 

  11. D. Lin, H. Wu, W. Zhang, H. Li and W. Pan, Appl. Phys. Lett., 94, 172103 (2009).

    Article  Google Scholar 

  12. S. I. Inamdar and K. Y. Rajpure, J. Alloys Compd., 595, 55 (2014).

    Article  CAS  Google Scholar 

  13. K. J. Chen, F. Y. Hung, S. J. Chang and S. J. Young, J. Alloys Compd., 479, 674 (2009).

    Article  CAS  Google Scholar 

  14. Z. Wang, X. Zhan, Y. Wang, S. Muhammad, Y. Huang and J. He, Nanoscale, 4, 2678 (2012).

    Article  CAS  Google Scholar 

  15. T. V. Tam, S. H. Hur, J. S. Chung and W. M. Choi, Sens. Actuators, A, 233, 368 (2015).

    Article  CAS  Google Scholar 

  16. D. I. Son, Y. H. Yang, T. W. Kim and W. I. Park, Appl. Phys. Lett., 102, 021105 (2013).

    Article  Google Scholar 

  17. A. Sáenz-Trevizo, P. Amézaga-Madrid, P. Pizá-Ruiz, W. Antúnez-Flores and M. Miki-Yoshida, Mat. Res., 19, 33 (2016).

    Article  Google Scholar 

  18. E. A. Davis and N. F. Mott, Philos. Mag., 22, 0903 (1970).

    Article  CAS  Google Scholar 

  19. K. H. Keem, H. S. Kim, G.-T. Kim, J. S. Lee, B. D. Min, K. A. Cho, M.-Y. Sung and S. S. Kim, Appl. Phys. Lett., 84, 4376 (2004).

    Article  CAS  Google Scholar 

  20. W. Zhang, X. Bi, X. Zhao, Z. Zhao, J. Zhu, S. Dai, Y. Ku and S. Yang, Org. Electron., 15, 3445 (2014).

    Article  CAS  Google Scholar 

  21. M. D. Tyona, Adv. Mater. Res., 2, 195 (2013).

    Article  Google Scholar 

  22. Y. Mouhamad, P. Mokarian-Tabari, N. Clarke, R. A. L. Jones and M. Geoghegan, J. Appl. Phys., 116, 123513 (2014).

    Article  Google Scholar 

  23. D. Meyerhofer, J. Appl. Phys., 49, 3993 (1978).

    Article  Google Scholar 

  24. B. D. Boruah, A. Mukherjee, S. Sridhar and A. Misra, ACS Appl. Mater. Interfaces, 7, 10606 (2015).

    Article  CAS  Google Scholar 

  25. G. H. Shin, H. Y. Kim and J. H. Kim, Korean J. Chem. Eng., 35, 573 (2018).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Korea Electric Power Corporation (Grant number: R18XA02). This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20194030202290). We thank the Smart Materials Research Center for IoT at Gachon University for its instrumental support (SEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehyun Hur.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, T., Choi, H.W. & Hur, J. ZnO/conducting polymer bilayer via sequential spin-coating for enhanced UV sensing. Korean J. Chem. Eng. 37, 1616–1622 (2020). https://doi.org/10.1007/s11814-020-0563-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0563-9

Keywords

  • Zinc Oxide Nanoparticles
  • PEDOT: PSS
  • Bilayer
  • Spin Coating
  • UV Sensor