Abstract
Zinc oxide (ZnO) has been widely investigated as an important ultraviolet (UV) sensing material in view of its wide band gap (~3.4 eV). However, the fabrication of continuous thin films of ZnO generally requires complex, time-consuming, and expensive processes, such as sputtering and atomic layer deposition. Herein, we demonstrate a bilayer film consisting of a conducting polymer and ZnO nanoparticles sequentially deposited using a simple, rapid, and inexpensive two-step spin-coating process. In this approach, it is not necessary to have a continuous ZnO nanoparticle film as the active layer, because the conducting polymer deposited under the ZnO nanoparticles acts as a conductive and continuous supporting layer for the particles. Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT: PSS) is used as the auxiliary layer to promote the efficient transport of photo-carriers generated from ZnO nanoparticles under UV light. As a result, under UV light (365 nm), photocurrents obtained from a ZnO/PEDOT: PSS bilayer film are significantly higher (∼20 times) than that from a ZnO layer for a given voltage bias. The photoelectric performance can be further tuned by controlling the speed of spin-coating in the deposition of ZnO nanoparticles. The stability and photo response (rise and decay time) of the ZnO/PEDOT: PSS bilayer film under the repeated on-off condition are also reported.
This is a preview of subscription content, access via your institution.
References
S. Zhang, L. Cai, T. Wang, R. Shi, J. Miao, L. Wei, Y. Chen, N. Sepúlveda and C. Wang, Sci. Rep., 5, 17883 (2015).
Y.-Q. Yu, L.-B. Luo, M.-Z. Wang, B. Wang, L.-H. Zeng, C.-Y. Wu, J.-S. Jie, J.-W. Liu, L. Wang and S.-H. Yu, Nano Res., 8, 1098 (2015).
A. G. Ardakani, M. Pazoki, S. M. Mahdavi, A. R. Bahrampour and N. Taghavinia, Appl. Surf. Sci., 258, 5405 (2012).
J. Kim, K. Y. Shin, M. H. Raza, N. Pinna and Y. E. Sung, Korean J. Chem. Eng., 36, 1157 (2019).
M. Farzadkia, K. Rahmani, M. Gholami, A. Esrafili, A. Rahmani and H. Rahmani, Korean J. Chem. Eng., 31, 2014 (2014).
Y. S. Seo and S. G. Oh, Korean J. Chem. Eng., 36, 2118 (2019).
K. Yu, Y. Zhang, F. Xu, Q. Li, Z. Zhu and Q. Wan, Appl. Phys. Lett., 88, 153123 (2006).
H. Seong, J. Yun, J. H. Jun, K. Cho and S. Kim, Nanotechnology, 20, 245201 (2009).
Y. Liu, N. Wei, Q. Zeng, J. Han, H. Huang, D. Zhong, F. Wang, L. Ding, J. Xia and H. Xu, Adv. Opt. Mater., 4, 238 (2016).
X. Liu, H. Du, P. Wang, T.-T. Lim and X. W. Sun, J. Mater. Chem. C., 2, 9536 (2014).
D. Lin, H. Wu, W. Zhang, H. Li and W. Pan, Appl. Phys. Lett., 94, 172103 (2009).
S. I. Inamdar and K. Y. Rajpure, J. Alloys Compd., 595, 55 (2014).
K. J. Chen, F. Y. Hung, S. J. Chang and S. J. Young, J. Alloys Compd., 479, 674 (2009).
Z. Wang, X. Zhan, Y. Wang, S. Muhammad, Y. Huang and J. He, Nanoscale, 4, 2678 (2012).
T. V. Tam, S. H. Hur, J. S. Chung and W. M. Choi, Sens. Actuators, A, 233, 368 (2015).
D. I. Son, Y. H. Yang, T. W. Kim and W. I. Park, Appl. Phys. Lett., 102, 021105 (2013).
A. Sáenz-Trevizo, P. Amézaga-Madrid, P. Pizá-Ruiz, W. Antúnez-Flores and M. Miki-Yoshida, Mat. Res., 19, 33 (2016).
E. A. Davis and N. F. Mott, Philos. Mag., 22, 0903 (1970).
K. H. Keem, H. S. Kim, G.-T. Kim, J. S. Lee, B. D. Min, K. A. Cho, M.-Y. Sung and S. S. Kim, Appl. Phys. Lett., 84, 4376 (2004).
W. Zhang, X. Bi, X. Zhao, Z. Zhao, J. Zhu, S. Dai, Y. Ku and S. Yang, Org. Electron., 15, 3445 (2014).
M. D. Tyona, Adv. Mater. Res., 2, 195 (2013).
Y. Mouhamad, P. Mokarian-Tabari, N. Clarke, R. A. L. Jones and M. Geoghegan, J. Appl. Phys., 116, 123513 (2014).
D. Meyerhofer, J. Appl. Phys., 49, 3993 (1978).
B. D. Boruah, A. Mukherjee, S. Sridhar and A. Misra, ACS Appl. Mater. Interfaces, 7, 10606 (2015).
G. H. Shin, H. Y. Kim and J. H. Kim, Korean J. Chem. Eng., 35, 573 (2018).
Acknowledgements
This research was supported by the Korea Electric Power Corporation (Grant number: R18XA02). This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20194030202290). We thank the Smart Materials Research Center for IoT at Gachon University for its instrumental support (SEM).
Author information
Authors and Affiliations
Corresponding author
Supporting Information
Rights and permissions
About this article
Cite this article
Park, T., Choi, H.W. & Hur, J. ZnO/conducting polymer bilayer via sequential spin-coating for enhanced UV sensing. Korean J. Chem. Eng. 37, 1616–1622 (2020). https://doi.org/10.1007/s11814-020-0563-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11814-020-0563-9
Keywords
- Zinc Oxide Nanoparticles
- PEDOT: PSS
- Bilayer
- Spin Coating
- UV Sensor