Skip to main content
Log in

Kinetic study on the reaction of palmitic acid with ethanol catalyzed by deep eutectic solvent based on dodecyl trimethyl ammonium chloride

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study explored the direct esterification of palmitic acid and ethanol using a deep eutectic solvent (DES) as catalyst to produce biodiesel. Three novel deep eutectic solvents (DTAC-PTSA, DTAC-2PTSA, DTAC-3PTSA) were successfully prepared by mixing dodecyl trimethyl ammonium chloride (DTAC) and p-toluenesulfonic acid monohydrate (PTSA) in a molar ratio of 1: z (z=1, 2, 3). After testing, DTAC-3PTSA was found to have the best catalytic performance among the three types of DESs and was therefore selected as the catalyst for subsequent experiments. The effects of agitation speed, ethanol to palmitic acid molar ratio (α), temperature and catalyst dosage were studied by investigating the change of palmitic acid conversion rate with time under different conditions, respectively. Then, the pseudo-homogeneous (PH) model was utilized to describe the kinetic behavior of this reaction between 328.15–348.15 K and it was found to work well for the experimental data obtained. Moreover, the catalytic performance of DTAC-3PTSA was detected to have no significant change in the cycle test. Therefore, DTAC-3PTSA can be considered as a substitute for traditional catalysts to produce biodiesel and the kinetic data obtained here can be used for further up-scaling study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ke :

equilibrium constant

ai :

activity of component i

ri :

reaction rate [mol min−1]

Mcat :

catalyst dosage [kg/kg]

γ i :

activity coefficient of component i

ki :

reaction rate constant [mol min−1]

Xi :

mole fraction of component i

SRS:

minimum sum of residual squares

α:

initial molar ratio of ethanol to palmitic acid

T:

Temperature [K]

Eai :

activation energy [kJ mol−1]

ΔrG0 :

Gibbs free energy [kJ mol−1]

ΔrS0 :

reaction entropy [J mol−1 K−1]

ΔrH0 :

reaction enthalpy [kJ mol−1]

DTAC:

dodecyl trimethyl ammonium chloride

PTSA:

p-toluenesulfonic acid monohydrate

z:

the number of moles of PTSA relative to per 1 mole of DTAC

DES:

deep eutectic solvent

R2 :

linear regression coefficient

References

  1. L. Rafael, C. L. Jon, D. Bipasa, C. Joy, M. C. Juan and A. R. Antonio, Energy Environ. Sci., 3, 1706 (2010).

    Article  Google Scholar 

  2. S. A. Renata, S.-T. Leonardo and R.-R. Fábio, Anal. Methods, 7, 4396 (2015).

    Article  Google Scholar 

  3. B. S. Sazzad, M. A. Fazal, A.-A. Haseeb and H. H. Masjuki, RSC Adv., 6, 60244 (2016).

    Article  CAS  Google Scholar 

  4. D. Singh, D. Sharma, S. L. Soni, S. Sharma and D. Kumari, Fuel, 253, 60 (2019).

    Article  CAS  Google Scholar 

  5. F. L. Adam, A. B. James, C. M. Jinesh and W. Karen, Chem. Soc. Rev., 43, 7887 (2014).

    Article  Google Scholar 

  6. L. L. Ana, M. R. Célia and J.-M. Claudio, Catal. Sci. Technol., 6, 2877 (2016).

    Article  Google Scholar 

  7. Z. Lillah, A. N. Toh and Z. Li, Green Chem., 16, 1202 (2014).

    Article  Google Scholar 

  8. A. M. Juan, I. Jose and M. Gabriel, Green Chem., 11, 1285 (2009).

    Article  Google Scholar 

  9. L. Pedro, M. B. Juana, G. V. Eduardo, S. G. Gregorio, V. Michel, M. I. Burguete and V. L. Santiago, Green Chem., 17, 3706 (2015).

    Article  Google Scholar 

  10. G. K. Avinash, N. M. Prashant and R. B. Pundlik, RSC Adv., 6, 105087 (2016).

    Article  Google Scholar 

  11. F. Su and Y. Guo, Green Chem., 16, 2934 (2014).

    Article  CAS  Google Scholar 

  12. Z. Lillah, G. Tan and Z. Li, Green Chem., 14, 3077 (2012).

    Article  Google Scholar 

  13. S. K. Naomi, H. Kousuke, I. Toru, N. Kazunori and Y. Toshikuni, Fuel, 139, 11 (2015).

    Article  Google Scholar 

  14. P. Liu, J. W. Hao, L. P. Mo and Z. H. Zhang, RSC Adv., 5, 48675 (2015).

    Article  CAS  Google Scholar 

  15. P. Chantamanee, S. Noriaki, S. Nut, C. Tawatchai and T. Hajime, Green Chem, 16, 4936 (2014).

    Article  Google Scholar 

  16. H. S. Siew, F. Y. Kian, T. L. Keat, S. Bhatia and H. T. Soon, RSC Adv., 3, 9070 (2013).

    Article  Google Scholar 

  17. Q. Zhang, D.-V. Karine, R. Sébastien and J. François, Chem. Soc. Rev., 41, 7108 (2012).

    Article  CAS  Google Scholar 

  18. F. Liu, D.-V. Karine, P. T. Marc, P. Yannick, J. M. Clacens, D. Floryan and J. François, Green Chem., 15, 901 (2013).

    Article  CAS  Google Scholar 

  19. B. P. Sunanda and S. S. Ganapati, Green Chem, 12, 458 (2010).

    Article  Google Scholar 

  20. T. N. Hai and H. T. Phuong, RSC Adv., 6, 98365 (2016).

    Article  Google Scholar 

  21. J. Cao, B. Qi, J. Liu, Y. Shang, H. Liu, W. Wang, J. Lv, Z. Chen, H. Zhang and X. Zhou, RSC Adv., 6, 21612 (2016).

    Article  CAS  Google Scholar 

  22. Y. R. Lee, Y. J. Lee, W. Ma and H. R. Kyung, Korean J. Chem. Eng., 33(8), 2337 (2016).

    Article  CAS  Google Scholar 

  23. P. H. Tran and A.-T. Hang, RSC Adv, 8, 11127 (2018).

    Article  CAS  Google Scholar 

  24. L. Gu, W. Huang, S. Tang, S. Tian and X. Zhang, Chem. Eng. J., 259, 647 (2015).

    Article  CAS  Google Scholar 

  25. C. Swapnendu, B. Sourav and C. Rajat, RSC Adv., 6, 74278 (2016).

    Article  Google Scholar 

  26. P. H. Michael, V. Amrit, L. C. Scott, L. C. Julie, W. L. Joseph, J. M. Eric and J. R. Aaron, Phys. Chem. Chem. Phys, 19, 28153 (2017).

    Article  Google Scholar 

  27. T. Marek, T. Stefan, S. Vasil and N. Jacek, Green Chem., 15, 1615 (2013).

    Article  Google Scholar 

  28. P. V. Sergeyand, H. Andreas, J. Chem. Soc., 2, 728 (2002).

    Google Scholar 

  29. A. Fredenslund and P. Rasmussen, AIChE J, 25(1), 203 (1979).

    Article  CAS  Google Scholar 

  30. C. Reid and J. M. Prausnitz, The properties of gases and liquids, McGraw-Hill, New York (1987).

    Google Scholar 

  31. A. Fredenslund, L. J. Russell and J. M. Prausnitz, AIChE J, 21(6), 1086 (1975).

    Article  CAS  Google Scholar 

  32. P. J. Barrie, Phys. Chem. Chem. Phys, 14, 318 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuoxiang Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Zeng, Z., Xue, W. et al. Kinetic study on the reaction of palmitic acid with ethanol catalyzed by deep eutectic solvent based on dodecyl trimethyl ammonium chloride. Korean J. Chem. Eng. 37, 1482–1489 (2020). https://doi.org/10.1007/s11814-020-0557-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0557-7

Keywords

Navigation