Skip to main content
Log in

Improved biodegradation of polyvinyl alcohol by hybrid nanoflowers of degrading enzymes from Bacillus niacini

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Polyvinyl alcohol (PVA) is a synthetic polymer that is difficult to degrade in nature. In this study, we synthesized PVA-degrading enzymes (PVAase)-Cu3(PO4)2 hybrid nanoflowers by using crude PVAase from Bacillus niacini for PVA degradation. The influences of PVAase concentration, Cu2+ concentration, and incubation time on the nucleation and activity of the PVAase hybrid nanoflower were investigated. The maximal activity recovery of the PVAase hybrid nanoflower was approximately 85% at 0.25 mg/mL of PVAase, 0.36mM Cu2+, and 72 h incubation time. The optimum temperature and pH of PVAase did not change before and after immobilization. Compared with free PVAase, the PVAase hybrid nanoflower showed high thermal stability and storage stability. Additionally, the PVAase hybrid nanoflower displayed excellent reusability after eight cycles and promising PVA degradability, indicating its potential application in PVA degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Tsujiyama and A. Okada, Biotechnol. Lett., 35, 1907 (2013).

    Article  CAS  Google Scholar 

  2. N. B. Halima, RSC Adv., 6, 39823 (2016).

    Article  Google Scholar 

  3. Y. L. Liu, Y. L. Deng, P. Chen, M. J. Duan, X. S. Lin and Y. Zhang, J. Basic. Microbiol., 59, 368 (2019).

    Article  CAS  Google Scholar 

  4. R. K. Balasubramanian, Colloids Surf. A, 455, 174 (2014).

    Article  Google Scholar 

  5. M. N. Kim and M. G. Yoon, Polym. Degrad. Stab., 95, 89 (2010).

    Article  CAS  Google Scholar 

  6. A. Stoica-Guzun, L. Jecu, A. Gheorghe, I. Raut, M. Stroescu, M. Ghiurea, M. Danila, I. Jipa and V. Fruth, J. Polym. Environ., 19, 69 (2011).

    Article  CAS  Google Scholar 

  7. E. Chiellini, A. Corti, S. D’Antone and R. Solaro, Prog. Polym. Sci., 28, 963 (2003).

    Article  CAS  Google Scholar 

  8. N. B. Halima, RSC Adv., 6, 39823 (2016).

    Article  Google Scholar 

  9. T. Suzuki, Y. Ichihara, M. Yamada and K. Tonomura, Agric. Biol. Chem., 37, 747 (1973).

    CAS  Google Scholar 

  10. T. Tsujiyama and T. Maoka Nitta, J. Biosci. Bioeng., 112, 58 (2011).

    Article  CAS  Google Scholar 

  11. H. J. Bian, M. F. Cao, H. Wen, Z. L. Tan, S. R. Jia and J. D. Cui, Int. J. Biol. Macromol., 124, 10 (2019).

    Article  CAS  Google Scholar 

  12. M. Ullah, C. H. Weng, H. Li, S. W. Sun, H. Zhang, A. H. Song and H. Zhu, Environ. Technol., 39, 2056 (2018).

    Article  CAS  Google Scholar 

  13. M. Shimao, T. Tamogami and S. Kishida, Microbiology, 146, 649 (2000).

    Article  CAS  Google Scholar 

  14. Y. H. Wei, J. Fu, J. Y. Wu, X. Y. Jia, Y. H. Zhou, C. D. Li, M. X. Dong, S. S. Wang, J. Zhang and F. Chen, Appl. Eviron. Microbial., 84, e01898–17 (2018).

    Google Scholar 

  15. Y. Yang, D. X. Zhang, S. Liu, D. X. Jia, G. C. Du and J. Chen, J. Ind. Microbiol. Biotechnol., 39, 99 (2012).

    Article  CAS  Google Scholar 

  16. D. X. Jia, J. H. Li, L. Liu, D. X. Zhang, Y. Yang, G. C. Du and J. Chen, Appl. Microbiol. Biotechnol., 97, 1113 (2013).

    Article  CAS  Google Scholar 

  17. B. Tang, X. Y. Liao, D. X. Zhang, M. Li, R. Li, K. L. Yan, G. C. Du and J. Chen, Polym. Degrad. Stab., 95, 557 (2010).

    Article  CAS  Google Scholar 

  18. L. Min, D. X. Zhang, G. C. Du and J. Chen, J. Microbiol. Biotechnol., 22, 220 (2012).

    Article  Google Scholar 

  19. S. Z. Ren, C. H. Li, X. B. Jiao, S. R. Jia, Y. J. Jiang, M. Bilal and J. D. Cui, Chem. Eng. J., 373, 1254 (2019).

    Article  CAS  Google Scholar 

  20. Z. Lin, Y. Xiao, L. Wang, Y. Q. Yin, J. N. Zheng, H. H. Yang and G. N. Chen, RSC Adv., 4, 13888 (2014).

    Article  CAS  Google Scholar 

  21. J. Ge, J. D. Lei and R. N. Zare, Nat. Nanotechnol., 7, 428 (2012).

    Article  CAS  Google Scholar 

  22. Z. Lin, Y. Xiao, Y. Q. Yin, W. L. Hu, W. Liu and H. H. Yang, ACS Appl. Mater. Interfaces, 6, 10775 (2014).

    Article  CAS  Google Scholar 

  23. B. Somturk, M. Hancer, I. Ocsoy and N. Ozdemir, DALTON T., 44, 13845 (2015).

    Article  CAS  Google Scholar 

  24. B. L. Zhang, P. T. Li, H. P. Zhang, L. L. Fan, H. Wang, X. J. Li, L. Tian, N. Ali, Z. Ali and Q. Y. Zhang, RSC Adv., 6, 46702 (2016).

    Article  CAS  Google Scholar 

  25. J. D. Cui, Y. M. Zhao, R. L. Liu, C. Zhong and S. R. Jia, Sci. Rep., 6, 27928 (2016).

    Article  CAS  Google Scholar 

  26. Z. F. Wu, H. Li, X. J. Zhu, S. Li, Z. Wang, L. Wang, Z. Q. Li and G. Ch, Catalyst, 7, 188 (2017).

    Article  Google Scholar 

  27. K. Qian, H. Wang, J. M. Liu, S. T. Gao, W. T. Liu, X. Wan, Y. Y. Zhang, Q. S. Liu and X. Y. Yin, New J. Chem., 42, 429 (2018).

    Article  CAS  Google Scholar 

  28. Y. Yu, X. Fei, J. Tian, L. Q. Xu, X. Y. Wang and Y. Wang, Colloids Surf. B., 130, 299 (2015).

    Article  CAS  Google Scholar 

  29. M. Zhao, J. H. Rong, J. Han, Y. Zhou, C. M. Li, L. Wang, Y. L. Mao and Y. Wang, ACS Appl. Mater. Interfaces, 11, 31878 (2019).

    Article  CAS  Google Scholar 

  30. M. M. Bradford, Anal. Biochem., 72, 248 (1976).

    Article  CAS  Google Scholar 

  31. J. H. Finley, Anal. Chem., 33, 1925 (1961).

    Article  CAS  Google Scholar 

  32. S. Escobar, S. Velasco-Lozano, C. H. Lu, Y. F. Lin, M. Mesa, C. Bernal and F. Lopez-Gallego, J. Mater. Chem. B., 5, 4478 (2017).

    Article  CAS  Google Scholar 

  33. S. W. Lee, S. A. Cheon, M. I. Kim and T. J. Park, J. Nanobiotechnol., 13, 54 (2015).

    Article  Google Scholar 

  34. U. Q. Yin, Y. Xiao, G. Lin, Q. Xiao, Z. Lin and Z. W. Cai, J. Mater. Chem. B., 3, 2295 (2015).

    Article  CAS  Google Scholar 

  35. C. Altinkaynak, I. Yilmaz, Z. Koksal, H. Ozdemir, I. Ocsoy and N. Ozdemir, Int. J. Biol. Macromol., 84, 402 (2016).

    Article  CAS  Google Scholar 

  36. B. L. Zhang, P. T. Li, H. P. Zhang, H. Wang, X. J. Li, L. Tian, N. Ali, Z. Ali and Q. Y. Zhang, Chem. Eng. J., 291, 287 (2016).

    Article  CAS  Google Scholar 

  37. A. Baldemir, N. B. Kose, N. Ildiz, S. Ilgun, S. Yusufbeyoglu, V. Yilmaz and I. Ocsoy, RSC Adv., 7, 44303 (2017).

    Article  CAS  Google Scholar 

  38. R. C. Rodrigues, C. Ortiz, Á. Berenguer-Murcia, R. Torres and R. Fernández-Lafuente, Chem. Soc. Rev., 42, 6290 (2013).

    Article  CAS  Google Scholar 

  39. S. Yabuki, Catalyst, 7, 36 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Open Project Program of State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology (project no. SKLFNS-KF201904). Dr. J.D. Cui also thanks the support from the Key Projects of Tianjin Natural Science Foundation, China (project no. 19JCZDJC38100), and the Foundation (No. 19272809D) of Key R & D projects of science and Technology Department of Hebei Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiandong Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, H., Wang, G., Cao, M. et al. Improved biodegradation of polyvinyl alcohol by hybrid nanoflowers of degrading enzymes from Bacillus niacini. Korean J. Chem. Eng. 37, 1020–1028 (2020). https://doi.org/10.1007/s11814-020-0547-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0547-9

Keywords

Navigation