Skip to main content
Log in

Rapid removal of low concentrations of mercury from wastewater using coal gasification slag

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Coal gasification slag (CGS) is a carbon-containing solid waste used as an adsorbent to remove low concentrations of mercury from wastewater in a series of batch tests to assess its adsorption properties and safe storage. The results showed that the adsorption of mercury on CGS was a very rapid and efficient process, and adsorption equilibrium was reached in only 10–40 min. A pseudo-second-order kinetics model provided a better fit to the equilibrium data. The adsorption capacity on CGS was just slightly below the value of active carbon. CGS showed the highest mercury removal efficiency at a solution pH of 4. Although the presence of other metal cations and anions affected the adsorption, CGS showed good selectivity for mercury ions. The adsorption of mercury was not affected by low concentrations of Cr3+ or Cu2+. The negative interference of anions on the removal efficiency followed the order: Cl>H2PO4 >CO2−3 . The adsorption mechanism related to the functional groups included ion exchange, precipitation, coordination complexation, and surface complexation. Mercury adsorbed on CGS leached very slowly in weakly acidic or basic solution. All results of the study indicate that CGS is an economical and safe adsorbent for potential industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Huang, L. Zhai, H. Xu and D. Jiang, J. Am. Chem. Soc., 139, 2428 (2017).

    CAS  PubMed  Google Scholar 

  2. B. Davodi, M. Ghorbani and M. Jahangiri, J. Taiwan Inst. Chem. Eng., 80, 363 (2017).

    CAS  Google Scholar 

  3. L. Liu, L. Ding, X. Wu and F. Deng, Ind. Eng. Chem. Res., 55, 51 (2016).

    Google Scholar 

  4. P. Wang, R. Wang, C. Wang and J. Qian, J. Comput. Theor. Nanosci., 13, 5714 (2016).

    CAS  Google Scholar 

  5. P. Hadi, M. H. To, C.W. Hui, C. S. K. Lin and G. McKay, Water Res., 73, 37 (2015).

    CAS  PubMed  Google Scholar 

  6. M. Cox, EI. EI-Shafey, A.A. Pichugin and Q. Appleton, J. Chem. Technol. Biotechnol., 75, 427 (2000).

    CAS  Google Scholar 

  7. Z. Wang, J. Xu, Y. Hu, H. Zhao, J. Zhou, Y. Liu, Z. Lou and X.H. Xiu, J. Taiwan Inst. Chem. Eng., 60, 394 (2015).

    Google Scholar 

  8. J.T. Ackerman, T. E. Kraus, J. A. Fleck, P. K. David, R.H. William, M.B. Sandra, M. P. Herzog, C. A. Hartman and P. A. M. Bachand, Environ. Sci. Technol., 49, 6304 (2015).

    CAS  PubMed  Google Scholar 

  9. X. Yan, J. Meng, X. Hu, R. Feng and M. Zhou, J. Sol-Gel Sci. Technol., 89, 617 (2019).

    CAS  Google Scholar 

  10. D. Zhang, Y. Yin and J. Liu, Chem. Speciat. Bioavailab., 29, 161 (2017).

    CAS  Google Scholar 

  11. B. Li, Y. Zhang, D. Ma, Z. Shi and S. Ma, Nat. Commun., 5, 5537 (2014).

    CAS  PubMed  Google Scholar 

  12. S. Lone, D. H. Yoon, H. Lee and I.W. Cheong, Environ. Sci.: Water Res. Technol., 5, 83 (2019).

    CAS  Google Scholar 

  13. M. Attari, S. S. Bukhari, H. Kazemian and S. Rohani, J. Environ. Chem. Eng., 5, 391 (2016).

    Google Scholar 

  14. Ü. Ecer, Ş. Yılmaz and T. Şahan, Water Sci. Technol., 78, 1348 (2018).

    CAS  PubMed  Google Scholar 

  15. Ş. Yılmaz, A. Zengin, Y. Akbulut and T. Şahan, Environ. Sci. Pollut. Res., 26, 20454 (2019).

    Google Scholar 

  16. Ş. Yılmaz, A. Zengin, Ü. Ecer and T. Şahan, Colloids Surf. A., 583, 123961 (2019).

    Google Scholar 

  17. Y. Uzun and T. Şahan, Arch. Environ. Prot., 43, 37 (2017).

    Google Scholar 

  18. S. Wang, Chem. Ind. Eng. Prog., 35, 653 (2016).

    CAS  Google Scholar 

  19. S. Xu, Z. Zhou, X. Gao, G. Yu and X. Gong, Fuel Process. Technol., 90, 1062 (2009).

    CAS  Google Scholar 

  20. S. Wu, S. Huang, L. Ji, Y. Wu and J. Gao, Fuel, 122, 67 (2014).

    CAS  Google Scholar 

  21. Y. Gu and X. Qiao, Micropor. Mesopor. Mater., 276, 303 (2019).

    CAS  Google Scholar 

  22. S. Liu, X. Chen, W. Ai and C. Wei, J. Clean. Prod., 212, 1062 (2019).

    CAS  Google Scholar 

  23. Y. Sun, D. Lv and J. Zhou, Chemosphere, 185, 452 (2017).

    CAS  PubMed  Google Scholar 

  24. J. H. Park, J. Wang, B. Zhou, J. E.R. Mikhael and R.D. DeLaune, Environ. Pollut., 244, 627 (2019).

    CAS  PubMed  Google Scholar 

  25. Ş. Yılmaz, T. Şahan and A. Karabakan, Korean J. Chem. Eng., 34, 2225 (2017).

    Google Scholar 

  26. D. Sun, X. Zhang, Y. Wu and X. Liu, J. Hazard. Mater., 181, 335 (2010).

    CAS  PubMed  Google Scholar 

  27. Y. Wang and D. Sun, Korean J. Chem. Eng., 32, 1323 (2015).

    CAS  Google Scholar 

  28. M.Y. Chang and R. S. Juang, Colloids Surf. A., 269, 35 (2005).

    CAS  Google Scholar 

  29. E.K. Faulconer and D.W. Mazyck, J. Environ. Chem. Eng., 5, 2879 (2017).

    CAS  Google Scholar 

  30. D. Zhang, P. Huo and W. Liu, Chinese J. Chem. Eng., 24, 446 (2016).

    CAS  Google Scholar 

  31. Z. Liu, L. Wu, H. Liu, H. Lan and J. Qu, Chem. Eng. J., 228, 925 (2013).

    Google Scholar 

  32. L. Ma, S. M. Islam, C. Xiao, J. Zhao, H. Liu, M. Yuan, G. Sun, H. Li, S. Ma and M. G. Kanatzidis, J. Am. Chem. Soc., 139, 12745 (2017).

    CAS  PubMed  Google Scholar 

  33. A. Azizi, E. Moniri, A. H. Hassani, H. A. Panahi and M. Miralinaghi, Microchem. J., 145, 559 (2019).

    CAS  Google Scholar 

  34. Y. Li, H. Xiao, Y. Pan, M. Zhang and Y. Jin, J. Hazard. Mater., 377, 88 (2019).

    CAS  PubMed  Google Scholar 

  35. C. Liu, J. Peng, L. Zhang, S. Wang, S. Ju and C. Liu, J. Clean. Prod., 196, 109 (2018).

    CAS  Google Scholar 

  36. A. Teimouri, H. Esmaeili, R. Foroutan and B. Ramavandi, Korean J. Chem. Eng., 35, 479 (2018).

    CAS  Google Scholar 

  37. G. Tan, W. Sun, Y. Xu, H. Wang, and N. Xu, Bioresour. Technol., 211, 727 (2016).

    CAS  PubMed  Google Scholar 

  38. A. E. Khoramzadeh, B. Nasemejad and R. Halladj, J. Taiwan Inst. Chem. E., 44, 266 (2013).

    CAS  Google Scholar 

  39. N.K. Gupta and A. Gupta, FlatChem., 11, 1 (2018).

    Google Scholar 

  40. K. Aghdam, H. A. Panahi, E. Alaei, A. H. Hasani and E. Moniri, Environ. Monit. Assess., 188, 223 (2016).

    PubMed  Google Scholar 

  41. A.M. Muliwa, M. S. Onyango, A. Maity and A. Ochieng, Water Sci. Technol., 75, 2841 (2017).

    CAS  PubMed  Google Scholar 

  42. M.K. Alomar, M.A. Alsaadi, T. M. Jassam, S. Akib, M. A. Hashim and C. Schwandt, J. Colloid Interface Sci., 497, 413 (2017).

    CAS  PubMed  Google Scholar 

  43. GB8978-1996, Integrated wastewater discharge standard, Publications, Beijing (1996).

    Google Scholar 

  44. P. Liu, C. J. Ptacek, D.W. Blowes and R. C. Landis, J. Hazard. Mater., 308, 233 (2016).

    CAS  PubMed  Google Scholar 

  45. P. Hadi, M. H. To, C.W. Hui, C. S. K. Li and G. Mckay, Water Res., 73, 37 (2015).

    CAS  PubMed  Google Scholar 

  46. N.D. Hutson, B. C. Attwood and K. G. Scheckel, Environ. Sci. Technol., 41, 1747 (2007).

    CAS  PubMed  Google Scholar 

  47. A. S. K. Kuma, S. J. Jiang and W.L. Tseng, J. Environ. Chem. Eng., 4, 2052 (2016).

    Google Scholar 

  48. E. Magni and G.A. Somorjai, Appl. Surf. Sci., 89, 187 (1995).

    CAS  Google Scholar 

  49. A. S. K. Kumar and S. J. Jiang, RSC Adv., 5, 6294 (2015).

    Google Scholar 

  50. Y. Guan, T. Hu, J. Wu, L. Zhao, F. Tian, W. Pan, P. He, X. Qi, F. Li and K. Xu, Korean J. Chem. Eng., 36, 115 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong (ZR2017MB024), Open Project Funding in the Province-Ministry Co-construction Coal Efficient Utilization and Green Chemistry of the State Key Laboratory (2017-K06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deshuai Sun or Qingjie Guo.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, L., Hu, X., Sun, D. et al. Rapid removal of low concentrations of mercury from wastewater using coal gasification slag. Korean J. Chem. Eng. 37, 1166–1173 (2020). https://doi.org/10.1007/s11814-020-0546-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0546-x

Keywords

Navigation