Skip to main content

Advertisement

Log in

Multi-functional NiO/g-C3N4 hybrid nanostructures for energy storage and sensor applications

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A multi-functional NiO/g-C3N4 (NC) hybrid nanostructure was synthesized by a hydrothermal process using melamine and Ni(OH)2 as precursors followed by thermal treatment. The optimal conditions were determined by studying the process conditions, such as the Ni(OH)2 to melamine ratio and thermal treatment temperature. The NC prepared in this study exhibited both excellent glucose sensing properties and supercapacitor properties. A very high glucose sensitivity, as high as 5,387.1 µA mM−1cm−2, and excellent energy density of 49.6 Wh kg−1 at a power density of 1,064.2 W kg−1 were obtained when NC was used as the electrode material for glucose sensing and symmetric supercapacitor, respectively. A flexible glucose sensing device using a flexible substrate and self-powered glucose sensor system that used the same material (NC) for the both power supply and sensing devices were also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.-W. Hwang, S. Lee, M. Seo and T. D. Chung, Anal. Chim. Acta, 1033, 1 (2018).

    CAS  PubMed  Google Scholar 

  2. S. A. Shabbir, S. Tariq, M. G. B. Ashiq and W. A. Khan, Biosci. Rep., 39, BSR20181983 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. M. Christwardana, J. Ji, Y. Chung and Y. Kwon, Korean J. Chem. Eng., 34, 2916 (2017).

    CAS  Google Scholar 

  4. L. C. Clark and C. Lyons, Ann. N. Y. Acad. Sci., 102, 29 (1962).

    CAS  PubMed  Google Scholar 

  5. Y. Su, H. Guo, Z. Wang, Y. Long, W. Li and Y. Tu, Sens. Actuators, B: Chem., 255, 2510 (2018).

    CAS  Google Scholar 

  6. M. Christwardana, Y. Chung, D. C. Tannia and Y. Kwon, Korean J. Chem. Eng., 35, 2421 (2018).

    CAS  Google Scholar 

  7. J. Chen, C. Liu, Y.-T. Huang, H. Lee and S.-P. Feng, Nanotechnology, 29, 505501 (2018).

    PubMed  Google Scholar 

  8. Y. Li, Y.-Y. Song, C. Yang and X.-H. Xia, Electrochem. Commun., 9, 981 (2007).

    CAS  Google Scholar 

  9. Y.-Y. Song, D. Zhang, W. Gao and X.-H. Xia, Chem. Eur. J., 11, 2177 (2005).

    CAS  PubMed  Google Scholar 

  10. S. Liu, B. Yu and T. Zhang, Electrochim. Acta, 102, 104 (2013).

    CAS  Google Scholar 

  11. P. Zhang, L. Zhang, G. Zhao and F. Feng, Microchim. Acta, 176, 411 (2012).

    CAS  Google Scholar 

  12. L. T. Hoa, J. S. Chung and S. H. Hur, Sens. Actuators, B: Chem., 223, 76 (2016).

    CAS  Google Scholar 

  13. Y.-L. T. Ngo, L. T. Hoa, J. S. Chung and S. H. Hur, J. Alloys Compd., 712, 742 (2017).

    CAS  Google Scholar 

  14. Y.-L. T. Ngo, L. Sui, W. Ahn, J. S. Chung and S. H. Hur, Nanoscale, 9, 19318 (2017).

    CAS  PubMed  Google Scholar 

  15. N. Pal, S. Banerjee and A. Bhaumik, J. Colloid Interface Sci., 516, 121 (2018).

    CAS  PubMed  Google Scholar 

  16. M. Baghayeri, A. Amiri, Z. Alizadeh, H. Veisi and E. Hasheminejad, J. Electroanal. Chem., 810, 69 (2018).

    CAS  Google Scholar 

  17. H. M. Shiri and M. Aghazadeh, J. Electrochem. Soc., 159, E132 (2012).

    CAS  Google Scholar 

  18. C. Heyser, R. Schrebler and P. Grez, J. Electroanal. Chem., 832, 189 (2019).

    CAS  Google Scholar 

  19. M. El-Kemary, N. Nagy and I. El-Mehasseb, Mater. Sci. Semicond. Process, 16, 1747 (2013).

    CAS  Google Scholar 

  20. Y. Zhang, Y. Wang, J. Jia and J. Wang, Sens. Actuators, B: Chem., 171–172, 580 (2012).

    Google Scholar 

  21. S. Zhang, J. Li, M. Zeng, J. Xu, X. Wang and W. Hu, Nanoscale, 6, 4157 (2014).

    CAS  PubMed  Google Scholar 

  22. M. K. Kundu, M. Sadhukhan and S. Barman, J. Mater. Chem., B, 3, 1289 (2015).

    CAS  Google Scholar 

  23. H.-L. Zhu and Y.-Q. Zheng, Electrochim. Acta, 265, 372 (2018).

    CAS  Google Scholar 

  24. Q. Liang, L. Ye, Q. Xu, Z.-H. Huang, F. Kang and Q.-H. Yang, Carbon, 94, 342 (2015).

    CAS  Google Scholar 

  25. J. Chen, Z. Mao, L. Zhang, D. Wang, R. Xu, L. Bie and B. D. Fahlman, ACS Nano, 11, 12650 (2017).

    CAS  PubMed  Google Scholar 

  26. A. Wang, C. Wang, L. Fu, W. Wong-Ng and Y. Lan, Nano-Micro Lett., 9, 47 (2017).

    CAS  Google Scholar 

  27. S. An, G. Zhang, T. Wang, W. Zhang, K. Li, C. Song, J. T. Miller, S. Miao, J. Wang and X. Guo, ACS Nano, 12, 9441 (2018).

    CAS  PubMed  Google Scholar 

  28. T.-T. Pham and E. W Shin, Langmuir, 34, 13144 (2018).

    CAS  PubMed  Google Scholar 

  29. J. Ehrmaier, T. N. V. Karsili, A. L. Sobolewski and W. Domcke, J. Phys. Chem. A, 121, 4754 (2017).

    CAS  PubMed  Google Scholar 

  30. Z. Wei, M. Liu, Z. Zhang, W. Yao, H. Tan and Y. Zhu, Energy Environ. Sci., 11, 2581 (2018).

    CAS  Google Scholar 

  31. I. S. Pieta, A. Rathi, P. Pieta, R. Nowakowski, M. Hołdynski, M. Pisarek, A. Kaminska, M. B. Gawande and R. Zboril, Appl. Catal. B, 244, 272 (2019).

    CAS  Google Scholar 

  32. Y.-L. T. Ngo, J. S. Chung and S. H. Hur, Dyes Pigm., 168, 180 (2019).

    Google Scholar 

  33. F. Motahari, M. R. Mozdianfard and M. Salavati-Niasari, Process Saf. Environ., 93, 282 (2015).

    CAS  Google Scholar 

  34. Y.-L. T. Ngo, W. M. Choi, J. S. Chung and S. H. Hur, Sens. Actuators, B: Chem., 282, 36 (2019).

    CAS  Google Scholar 

  35. N. Cheng, P. Jiang, Q. Liu, J. Tian, A. M. Asiri and X. Sun, Analyst, 139, 5065 (2014).

    CAS  PubMed  Google Scholar 

  36. S. Rakshit, S. Ghosh, S. Chall, S. S. Mati, S. P. Moulik and S. C. Bhattacharya, RSC Adv., 3, 19348 (2013).

    CAS  Google Scholar 

  37. T. Marimuthu, S. Mohamad and Y. Alias, Synth. Met., 207, 35 (2015).

    CAS  Google Scholar 

  38. P. Subramanian, J. Niedziolka-Jonsson, A. Lesniewski, Q. Wang, M. Li, R. Boukherroub and S. Szunerits, J. Mater. Chem. A, 2, 5525 (2014).

    CAS  Google Scholar 

  39. M. Li, X. Bo, Z. Mu, Y. Zhang and L. Guo, Sens. Actuators, B: Chem., 192, 261 (2014).

    CAS  Google Scholar 

  40. J. Yang, M. Cho, C. Pang and Y. Lee, Sens. Actuators, B: Chem., 211, 93 (2015).

    CAS  Google Scholar 

  41. M. Wu, S. Meng, Q. Wang, W. Si, W. Huang and X. Dong, ACS Appl. Mater. Interfaces, 7, 21089 (2015).

    CAS  PubMed  Google Scholar 

  42. R. A. Soomro, Z. H. Ibupoto, Sirajuddin, M. I. Abro and M. Willander, Sens. Actuators, B: Chem., 209, 966 (2015).

    CAS  Google Scholar 

  43. M. S. Palagonia, C. Erinmwingbovo, D. Brogioli and F. La Mantia, J. Electroanal. Chem., 847, 113170 (2019).

    CAS  Google Scholar 

  44. A. Roy, A. Ray, S. Saha, M. Ghosh, T. Das, B. Satpati, M. Nandi and S. Das, Electrochim. Acta, 283, 327 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by The Ministry of Science, ICT and Future Planning (2019R1A2B5B02069683).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Suk Chung or Seung Hyun Hur.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo, YL.T., Chung, J.S. & Hur, S.H. Multi-functional NiO/g-C3N4 hybrid nanostructures for energy storage and sensor applications. Korean J. Chem. Eng. 37, 1589–1598 (2020). https://doi.org/10.1007/s11814-020-0531-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0531-4

Keywords

Navigation