Skip to main content
Log in

Improving primary sludge dewaterability by oxidative conditioning process with ferrous ion-activated peroxymonosulfate

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Enhancement of sludge dewaterability is key for sludge management and disposal of wastewater treatment plants (WWTP). In this study, the Fe2+-peroxymonosulfate (PMS) conditioning approach was first used to oxidize the primary sludge from the primary sedimentation tank of a full scale WWTP. The combination of Fe2+ (0.05–0.5 g/g TSS) and PMS (0.05–0.5 g/g TSS) could significantly improve the dewaterability of primary sludge. The optimal addition amount of Fe2+ and PMS was 0.1 g/g TSS and 0.25 g/g TSS, respectively, under which the capillary suction time (CST) and specific resistance to filtration (SRF) of the sludge was reduced by 79% and 95%. The physicochemical properties (particle size, zeta potential, EPS composition) of the primary sludge before and after oxidative conditioning were measured. Results showed that sulfate radicals generated from Fe2+-PMS system effectively reduced organic matter in different EPS fractions, further destroying sludge floc cells. Then the bound water in the sludge flocs was released, thereby improving the sludge dewaterability. The microscopic morphology also indicated that the sludge flocs have a blocky structure with tight texture before conditioning. After conditioning, the sludge flocs become smaller, and many irregular pores are formed on the surface, which facilitates the passage of internal moisture. Economic analysis showed that Fe2++PMS conditioning is more economical than the traditional Fenton method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADS:

anaerobic digested sludge

AOPs:

advanced oxidation processes

COD:

chemical oxygen demand

CST:

capillary suction time

DOC:

dissolved organic carbon

EPS:

extracellular polymeric substances

EZP:

electrolysis/electrocoagulation and zero-valent iron activated persulfate oxidation

HP:

hydrogen peroxide, H2O2

LB-EPS:

loosely bound extracellular polymeric substances

MW:

microwave

Mw:

weight-average molecular weight

Mn:

number-average molecular weight

·OH:

hydrogen radical

OPC:

quick lime and 42.5 ordinary portland cement

PDS:

peroxydisulfate, S2O2−8

PMS:

peroxymonosulfate, HSO5

PMS-EDTA-Fe2+ :

peroxymonosulfate activated by EDTA chelated-Fe2+ process

SB-EPS:

soluble extracellular polymeric substances

SEM:

scanning electron microscope

SO·−4 :

sulfate radical

SRF:

specific resistance to filtration

TB-EPS:

tightly bound extracellular polymeric substances

TOC:

total organic carbon

TS:

total solids

TSS:

total suspended solids

VS:

volatile solids

VSS:

volatile suspended solids

VTM-PMS-RH:

natural vanadium-titanium magnetite-activated peroxymonosulfate oxidation coupled with rice husk as skeleton builder

WAS:

waste activated sludge

ZVI:

zero-valent iron

References

  1. Q. Wang, W. Wei, Y. Gong, Q. Yu, Q. Li, J. Sun and Z. Yuan, Sci. Total Environ., 587–588, 510 (2017).

    PubMed  Google Scholar 

  2. W. Wei, X. Zhou, D. Wang, J. Sun and Q. Wang, Water Res., 118, 12 (2017).

    CAS  PubMed  Google Scholar 

  3. X. Zhou, G. Jiang, Q. Wang and Z. Yuan, Rsc Adv., 4, 50644 (2014).

    CAS  Google Scholar 

  4. K. Xiao, Y. Chen, X. Jiang, Q. Yang, W. Y. Seow, W. Zhu and Y. Zhou, Water Res., 109, 13 (2017).

    CAS  PubMed  Google Scholar 

  5. B. Cao, W. Zhang, Y. Du, R. Wang, S. P. Usher, P. J. Scales and D. Wang, Water Res., 130, 363 (2018).

    CAS  PubMed  Google Scholar 

  6. W. Gao, Desalination, 268, 170 (2011).

    CAS  Google Scholar 

  7. S. Guo, F. Qu, A. Ding, J. He, H. Yu, L. Bai, G. Li and H. Liang, Rsc Adv., 5, 43065 (2015).

    CAS  Google Scholar 

  8. L. Wang, C. Qian, J. Jiang, X. Ye and H. Yu, Environ. Pollut., 231, 1388 (2017).

    CAS  PubMed  Google Scholar 

  9. G. Q. Su, M. X. Huo, Z. G. Yuan, S. Y. Wang and Y. Z. Peng, Bioresour. Technol., 136, 237 (2013).

    CAS  PubMed  Google Scholar 

  10. M. B. Kurade, K. Murugesan, A. Selvam, S. Yu and J. W. C. Wong, Bioresour. Technol., 217, 179 (2016).

    CAS  PubMed  Google Scholar 

  11. W. Zhang, P. Xiao, Y. Liu, S. Xu, F. Xiao, D. Wang and C. W. K. Chow, Sep. Purif. Technol., 132, 430 (2014).

    CAS  Google Scholar 

  12. H. Liu, J. Yang, N. Zhu, H. Zhang, Y. Li, S. He, C. Yang and H. Yao, J. Hazard. Mater., 258, 144 (2013).

    PubMed  Google Scholar 

  13. X. Zhou, Q. Wang, G. Jiang, P. Liu and Z. Yuan, Bioresour. Technol., 185, 416 (2015).

    CAS  PubMed  Google Scholar 

  14. X. Zhou, H. Chen, S. Gao, S. Han, R. Tu, W. Wei, C. Cai, P. Liu, W. Jin and Q. Wang, Korean J. Chem. Eng., 34, 2672 (2017).

    CAS  Google Scholar 

  15. G. Zhen, X. Lu, Y. Li, Y. Zhao, B. Wang, Y. Song, X. Chai, D. Niu and X. Cao, Bioresour. Technol., 119, 7 (2012).

    CAS  PubMed  Google Scholar 

  16. R. Dewil, J. Baeyens and E. Neyens, J. Hazard. Mater., 117, 161 (2005).

    CAS  PubMed  Google Scholar 

  17. E. Neyens, J. Baeyens, M. Weemaes and B. De Heyder, J. Hazard. Mater., 98, 91 (2003).

    CAS  PubMed  Google Scholar 

  18. M. S. Kim, K. Lee, H. Kim, H. Lee, C. Lee and C. Lee, Environ. Sci. Technol., 50, 7106 (2016).

    CAS  PubMed  Google Scholar 

  19. W. Ren, Z. Zhou, Y. Zhu, L. Jiang, H. Wei, T. Niu, P. Fu and Z. Qiu, Int. Biodeter. Biodegr., 104, 384 (2015).

    CAS  Google Scholar 

  20. C. Liu, B. Wu and X. Chen, Chem. Eng. J., 335, 865 (2018).

    CAS  Google Scholar 

  21. S. Wacławek, H. V. Lutze, K. Grübel, V. V. T. Padil, M. Černík and D. D. Dionysiou, Chem. Eng. J., 330, 44 (2017).

    Google Scholar 

  22. C. Liu, Chem. Eng. J., 359, 217 (2019).

    CAS  Google Scholar 

  23. A. Rastogi, S. R. Al-Abed and D. D. Dionysiou, Water Res., 43, 684 (2009).

    CAS  PubMed  Google Scholar 

  24. C. Cai, H. Zhang, X. Zhong and L. Hou, J. Hazard. Mater., 283, 70 (2015).

    CAS  PubMed  Google Scholar 

  25. J. Liu, Q. Yang, D. Wang, X. Li, Y. Zhong, X. Li, Y. Deng, L. Wang, K. Yi and G. Zeng, Bioresour. Technol., 206, 134 (2016).

    CAS  PubMed  Google Scholar 

  26. K. Song, X. Zhou, Y. Liu, Y. Gong, B. Zhou, D. Wang and Q. Wang, Sci. Rep-Uk., 6, 24800 (2016).

    CAS  Google Scholar 

  27. R. Canziani and L. Spinosa Sludge from wastewater treatment plants, Elsevier, The Netherlands (2019).

    Google Scholar 

  28. V. K. Tyagi and S. Lo, Renew. Sust. Energy Rev., 25, 708 (2013).

    CAS  Google Scholar 

  29. H. Carrère, C. Dumas, A. Battimelli, D. J. Batstone, J. P. Delgenès, J. P. Steyer and I. Ferrer, J. Hazard. Mater., 183, 1 (2010).

    PubMed  Google Scholar 

  30. P. Devi and A. K. Saroha, Sci. Total Environ., 578, 16 (2017).

    CAS  PubMed  Google Scholar 

  31. T. Meyer, P. Amin, D. G. Allen and H. Tran, J. Environ. Chem. Eng., 6, 6317 (2018).

    CAS  Google Scholar 

  32. J. Benítez, A. Rodríguez and A. Suárez, Water Res., 28, 2067 (1994).

    Google Scholar 

  33. J. Diak and B. Örmeci, J. Environ. Manage., 216, 406 (2018).

    CAS  PubMed  Google Scholar 

  34. J. Lu, S. Rao, T. Le, S. Mora and S. Banerjee, Process Biochem., 46, 353 (2011).

    CAS  Google Scholar 

  35. K. Xiao, Y. Chen, X. Jiang, V. K. Tyagi and Y. Zhou, Water Res., 105, 470 (2016).

    CAS  PubMed  Google Scholar 

  36. X. Zhou, W. Jin, H. Chen, C. Chen, S. Han, R. Tu, W. Wei, S. Gao, G. Xie and Q. Wang, Water Sci. Technol., 76, 2427 (2017).

    CAS  PubMed  Google Scholar 

  37. F. Sun, K. Xiao, W. Zhu, N. Withanage and Y. Zhou, Water Res., 130, 208 (2018).

    CAS  PubMed  Google Scholar 

  38. X. Zhou, G. Jiang, T. Zhang, Q. Wang, G. Xie and Z. Yuan, Bioresour. Technol., 192, 817 (2015).

    CAS  PubMed  Google Scholar 

  39. G. Zhen, X. Lu, Y. Zhao, X. Chai and D. Niu, Bioresour. Technol., 116, 259 (2012).

    CAS  PubMed  Google Scholar 

  40. G. Zhen, X. Lu, B. Wang, Y. Zhao, X. Chai, D. Niu, A. Zhao, Y. Li, Y. Song and X. Cao, Bioresour. Technol., 124, 29 (2012).

    CAS  PubMed  Google Scholar 

  41. Y. Li, X. Yuan, D. Wang, H. Wang, Z. Wu, L. Jiang, D. Mo, G. Yang, R. Guan and G. Zeng, Bioresour. Technol., 262, 294 (2018).

    CAS  PubMed  Google Scholar 

  42. F. Liu, L. Zhou, J. Zhou, X. Song and D. Wang, J. Hazard. Mater., 221–222, 170 (2012).

    PubMed  Google Scholar 

  43. K. B. Thapa, Y. Qi and A. F. A. Hoadley, Colloids Surf. A: Physicochem. Eng. Aspects, 334, 66 (2009).

    CAS  Google Scholar 

  44. Q. Yu, H. Lei, G. Yu, X. Feng, Z. Li and Z. Wu, Chem. Eng. J., 155, 88 (2009).

    CAS  Google Scholar 

  45. G. Zhen, X. Lu, Y. Li and Y. Zhao, Bioresour. Technol., 136, 654 (2013).

    CAS  PubMed  Google Scholar 

  46. G. Sheng, H. Yu and X. Li, Biotechnol. Adv., 28, 882 (2010).

    CAS  PubMed  Google Scholar 

  47. X. Qian, Y. Wang and H. Zheng, Water Res., 88, 93 (2016).

    CAS  PubMed  Google Scholar 

  48. B. Wilén, K. Keiding and P. H. Nielsen, Water Res., 34, 3933 (2000).

    Google Scholar 

  49. G. Zhen, J. Wang, X. Lu, L. Su, X. Zhu, T. Zhou and Y. Zhao, Chemosphere, 221, 141 (2019).

    CAS  PubMed  Google Scholar 

  50. J. Wang, M. Yang, R. Liu, C. Hu, H. Liu and J. Qu, Water Res., 160, 454 (2019).

    CAS  PubMed  Google Scholar 

  51. N. Buyukkamaci, Process Biochem., 39, 1503 (2004).

    CAS  Google Scholar 

  52. G. Zhen, X. Lu, J. Niu, L. Su, X. Chai, Y. Zhao, Y. Li, Y. Song and D. Niu, Chem. Eng. J., 233, 274 (2013).

    CAS  Google Scholar 

  53. K. Song, X. Zhou, Y. Liu, G. Xie, D. Wang, T. Zhang, C. Liu, P. Liu, B. Zhou and Q. Wang, Chem. Eng. J., 295, 436 (2016).

    CAS  Google Scholar 

  54. Q. Wang, J. Sun, K. Song, X. Zhou, W. Wei, D. Wang, G. Xie, Y. Gong and B. Zhou, J. Environ. Sci.-China, 67, 378 (2018).

    PubMed  Google Scholar 

  55. Y. Li, X. Yuan, Z. Wu, H. Wang, Z. Xiao, Y. Wu, X. Chen and G. Zeng, Chem. Eng. J., 303, 636 (2016).

    CAS  Google Scholar 

  56. C. Liu, B. Wu, X. E. Chen and S. Xie, Chem. Pap., 71, 2343 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51878215), China Postdoctoral Science Foundation (2019M661265), Natural Science Foundation of Guangdong Province, China (2018A030313185) and Shenzhen Science and Technology Innovation Project (KJYY20171011144235970, JCYJ 20170307150223308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Jin, W., Wang, L. et al. Improving primary sludge dewaterability by oxidative conditioning process with ferrous ion-activated peroxymonosulfate. Korean J. Chem. Eng. 37, 1498–1506 (2020). https://doi.org/10.1007/s11814-020-0517-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0517-2

Keywords

Navigation