Skip to main content
Log in

Selective separation of Cd(II), Zn(II) and Pb(II) from Pb-Zn smelter wastewater via shear induced dissociation coupling with ultrafiltration

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Treatment of Pb-Zn smelter wastewater via complexation-ultrafiltration (C-UF) was studied using copolymer of acrylic acid-maleic acid (PMA) as complexant. The complexing reaction kinetics of M (Cd(II), Pb(II) and Zn(II)) with PMA were examined for the first time and the pseudo-first-order model could be employed to simulate the reaction. The effects of the mass ratio of PMA to metal ions (P/M) and pH on the simultaneous removal of Cd(II), Zn(II) and Pb(II) via C-UF were investigated, and the optimized P/M and pH are 10 and 7.0, respectively. Furthermore, the shear stability of PMA-Cd, PMA-Zn and PMA-Pb complexes was investigated, and the corresponding critical shear rates (γc), the smallest shear rate at which the complexes begin to dissociate were 1.98×105, 1.81×104 and 1.38×105 s−1, respectively. The selective recovery of Cd(II), Zn(II) and Pb(II) from Pb-Zn Smelter wastewater as well as the regeneration of PMA were fulfilled by shear induced dissociation coupled with ultrafiltration (SID-UF) according to the difference of critical shear rates of PMA-M complexes, and the regenerated PMA showed almost the same complexation ability as the original.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C0 :

metal concentration of the permeate at rest [mg L−1]

Cf :

metal concentration of the feed [mg L−1]

C H+ :

H+ concentration [mg L−1]

CM :

metal concentration ratio of the permeate to the initial feed

CPMA :

PMA concentration [mg L−1]

Cp :

metal concentration of the permeate [mg L−1]

CR :

metal concentration ratio of retentate to the initial feed

C com :

metal concentration of the permeate through the complexation region [mg L−1]

Cdis :

metal concentration of the permeate through the dissociation region [mg L−1]

F:

permeation coefficient [L m−2 kPa−1 h−1, m s−1 Pa−1]

K:

rate constant

K1 :

pseudo-first-order rate constant

K*:

observed rate constant

k:

velocity following factor

N:

rotation speed [rpm]

Nc :

critical rotation speed [rpm]

P0 :

center pressure [kPa]

r0 :

membrane outsider radius [m]

ri :

membrane insider radius [m]

rc :

critical radius [m]

R:

rejection of metal [%]

R2 :

regression coefficient

t:

time [s]

VR :

the volume ratio of supplementar y deionized water to the initial feed

v :

kinematic viscosity [m2s−1 ]

ρ :

fluid density [kg m−3]

γ :

shear rate [s−1]

γ c :

critical shear rate [s−1]

γcl, γct :

critical shear rate on membrane surface in the laminar regime and turbulent regime [s−1]

β :

selective separation factor

References

  1. D. Vilela, J. Parmar, Y. Zeng, Y. Zhao and S. Sánchez, Nano Lett., 16, 2860 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. A.G. Alejandro, H. M. Virginia, B. P. Adrian, M. A. Montes and D. I. Mendoza, Ind. Eng. Chem. Res., 50, 9354 (2011).

    Article  CAS  Google Scholar 

  3. E. Kim, L. Horckmans, J. Spooren, K.C. Vrancken, M. Quaghebeur and K. Broos, Hydrometallurgy, 169, 372 (2017).

    Article  CAS  Google Scholar 

  4. Q. Zhang, B. Pan, W. Zhang, B. Pan, L. Lv, X. Wang, J. Wu and X. Tao, J. Hazard. Mater., 170, 824 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. A. Heidari, H. Younesi and Z. Mehraban, Chem. Eng. J., 153, 70 (2009).

    Article  CAS  Google Scholar 

  6. M. G. Kiran, K. Pakshirajan and G. Das, Chem. Eng. J., 321, 67 (2017).

    Article  CAS  Google Scholar 

  7. A. Concas, S. Montinaro, M. Pisu and G. Cao, Chem. Eng. Sci., 62, 5186 (2007).

    Article  CAS  Google Scholar 

  8. A. Rahmani, H. Z. Mousavi and M. Fazli, Desalination, 253, 94 (2010).

    Article  CAS  Google Scholar 

  9. Y. Liu, Q. Peng, Y. Yang, Y. Bo, Y. Wang, S. Ye and Y. Chen, J. Environ. Sci. (China), 67, 227 (2018).

    Google Scholar 

  10. I.K. Moideen, A.M. Isloor, A.A. Qaiser, A.F. Ismail and M.S. Abdullah, Korean J. Chem. Eng., 35, 1 (2018).

    Article  CAS  Google Scholar 

  11. S. Anbalagan, S.K. Ponnusamy, S.R. P. Selvam, A. Sankaranarayan and A. Dutta, Korean J. Chem. Eng., 33, 2716 (2016).

    Article  CAS  Google Scholar 

  12. J. Wang, Y. Zhao, P. Zhang, L. Yang, H. A. Xu and G. Xi, Chin. J. Chem. Eng., 22, 231 (2018).

    Google Scholar 

  13. S. Habibi, A. Nematollahzadeh and S. A. Mousavi, Chem. Eng. J., 267, 306 (2015).

    Article  CAS  Google Scholar 

  14. A. Nematollahzadeh, S. Seraj and B. Mirzayi, Chem. Eng. J., 277, 21 (2015).

    Article  CAS  Google Scholar 

  15. X. Z. Li, Q.L. Zhao and X.D. Hao, Waste Manage., 19, 409 (2014).

    Article  Google Scholar 

  16. J. F. Zhang, T.E. Brutus, J.M. Cheng and X.G. Meng, J. Environ. Sci. (China), 57, 190 (2017).

    Article  Google Scholar 

  17. Y. Zheng and A. Wang, Chem. Eng. J., 162, 186 (2010).

    Article  CAS  Google Scholar 

  18. N. Meunier, P. Drogui, C. Montané, R. Hausler, G. Mercier and J. F. Blais, J. Hazard. Mater., 137, 581 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. C.W. Li, C. H. Cheng, K. H. Choo and W. S. Yen, Chemosphere, 72, 630 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. M.A. Barakat and E. Schmidt, Desalination, 256, 90 (2010).

    Article  CAS  Google Scholar 

  21. J.X. Zeng, H.Q. Ye and Z.Y. Hu, J. Hazard. Mater., 161, 1491 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. A.Y. Jiao, Z.S. Li and L.C. Bao, Desalination, 322, 29 (2013).

    Article  CAS  Google Scholar 

  23. K. Evina, M. Simos and K. J. Haralambous, Chemosphere, 82, 557 (2011).

    Article  CAS  Google Scholar 

  24. Y. Huang, D. Wu, X. Wang, W. Huang, D. Lawless and X. Feng, Sep. Purif. Technol., 158, 124 (2016).

    Article  CAS  Google Scholar 

  25. G. Borbély and E. Nagy, Desalination, 240, 218 (2009).

    Article  CAS  Google Scholar 

  26. M.A. Khosa, S. S. Shah and X. Feng, Chem. Eng. J., 244, 446 (2014).

    Article  CAS  Google Scholar 

  27. L. Javier, P. Angel, M. A. Rodrigo and C. I. Pablo, J. Hazard. Mater., 168, 25 (2009).

    Article  CAS  Google Scholar 

  28. H. S. Le, Y.R. Qiu and S.Y. Tang, Desal. Water Treat., 160, 41 (2019).

    Article  CAS  Google Scholar 

  29. R. Camarillo, Á. Pérez, P. Cañizares and A.D. Lucas, Desalination, 286, 193 (2012).

    Article  CAS  Google Scholar 

  30. S.Y. Tang and Y.R. Qiu, Korean J. Chem. Eng., 36, 1321 (2019).

    Article  CAS  Google Scholar 

  31. Q. Zhang, J. Gao and Y.R. Qiu, Chem. Eng. Process., 135, 236 (2019).

    Article  CAS  Google Scholar 

  32. J.Y. Xu, S. Y. Tang and Y. R. Qiu, J. Cent. South Univ., 26, 577 (2019).

    Article  CAS  Google Scholar 

  33. B.Y. Spivakov, V. M. Shkinev, V. I. Golovanov, E. Bayer and K. E. Geckeler, Theory. Simulations, 5, 357 (1996).

    Article  CAS  Google Scholar 

  34. R. S. Juang and C.H. Chiou, J. Membr. Sci., 177, 207 (2000).

    Article  CAS  Google Scholar 

  35. G. Boczkaj and A. Fernandes, Chem. Eng. J., 320, 608 (2017).

    Article  CAS  Google Scholar 

  36. Y.R Qiu and L. J. Mao, Desalination, 329, 78 (2013).

    Article  CAS  Google Scholar 

  37. P. Gull, M. A. Malik, O. A. Dar and A.A. Hashmi, J. Mol. Struct., 1134, 734 (2017).

    Article  CAS  Google Scholar 

  38. J. Llanos, R. Camarillo, Á. Pérez and P. Cañizares, Sep. Purif. Technol., 73, 126 (2010).

    Article  CAS  Google Scholar 

  39. P. Cañizares, A. Pérez, R. Camarillo and R. Mazarro, J. Membr. Sci., 320, 520 (2008).

    Article  CAS  Google Scholar 

  40. S.Y. Tang and Y.R. Qiu, Korean J. Chem. Eng., 35, 2078 (2018).

    Article  CAS  Google Scholar 

  41. R. Bouzerar, M.Y. Jaffrin, L. H. Ding and P. Paullier, Aiche J., 46, 257 (2000).

    Article  CAS  Google Scholar 

  42. H. Llerena-Chavez and F. Larachi, Chem. Eng. J., 64, 2113 (2009).

    Article  CAS  Google Scholar 

  43. X.Z. Jian, Q.Y. Hong, N.D. Huang, J. F. Liu and F. Z. Li, Chemosphere, 76, 706 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 21476265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Ren Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, HS., Qiu, YR. Selective separation of Cd(II), Zn(II) and Pb(II) from Pb-Zn smelter wastewater via shear induced dissociation coupling with ultrafiltration. Korean J. Chem. Eng. 37, 784–791 (2020). https://doi.org/10.1007/s11814-020-0509-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0509-2

Keywords

Navigation