Skip to main content

Advertisement

Log in

Solvo-hydrothermal synthesis of calcium phosphate nanostructures from calcium inositol hexakisphosphate precursor in water-ethanol mixed solutions

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We report the synthesis and characterization of crystalline calcium phosphate (CaP) nanostructures from calcium inositol hexakisphosphate (CaIP6) precursor in water-ethanol mixed solutions. We show how these CaPs can be prepared by a solvo-hydrothermal reaction and determined their compositions and structures using a battery of material characterization techniques. Our results show that only the hydroxyapatite (HAP) and dicalcium phosphate anhydrous (DCPA) phases of CaP were present in the nanostructures produced in water-ethanol mixtures, and that HAP/DCPA ratio of the rod- and plate-shaped CaP nanostructures produced were affected by the amount of ethanol present in these mixtures. The described method can be used to improve morphological control of CaP-based biomate-rials and has potential use in bone regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Combes, S. Cazalbou and C. Rey, Minerals, 6, 34 (2016).

    Article  Google Scholar 

  2. S. V. Dorozhkin, Materials, 6, 3840 (2013).

    Article  CAS  Google Scholar 

  3. M. Epple, K. Ganesan, R. Heumann, J. Klesing, A. Kovtun, S. Neumann and V. Sokolova, J. Mater. Chem., 20, 18 (2010).

    Article  CAS  Google Scholar 

  4. W. Habraken, P. Habibovic, M. Epple and M. Bohner, Mater. Today, 19, 69 (2016).

    Article  CAS  Google Scholar 

  5. Y. Q. Shen, Y. J. Zhu, F. F. Chen, Y. Y. Jiang, Z. C. Xiongand F. Chen, J. Mater. Chem. B, 6, 4985 (2018).

    Article  CAS  Google Scholar 

  6. J. Zhao, Y. Liu, W. B. Sun and H. Zhang, Chem. Cent. J., 5, 1 (2011).

    Article  Google Scholar 

  7. M. Nagano, T. Nakamura, T. Kokubo, M. Tanahashi and M. Ogawa, Biomaterials, 17, 1771 (1996).

    Article  CAS  Google Scholar 

  8. R. A. Surmenev, M. A. Surmeneva and A. A. Ivanova, Acta Biomater., 10, 557 (2014).

    Article  CAS  Google Scholar 

  9. R. Mi, Y. Liu, X. Chen and Z. Shao, Nanoscale, 8, 20096 (2016).

    Article  CAS  Google Scholar 

  10. S. Bose and S. Tarafder, Acta Biomater., 8, 1401 (2012).

    Article  CAS  Google Scholar 

  11. K. W. Wang, Y. J. Zhu, X. Y. Chen, W. Y. Zhai, Q. Wang, F. Chen, J. A. Chang and Y. R. Duan, Chem. Asian J., 5, 2477 (2010).

    Article  CAS  Google Scholar 

  12. L. X. Yang, J. J. Yin, L. L. Wang, G. X. Xing, P. Yin and Q. W. Liu, Ceram. Int., 38, 495 (2012).

    Article  CAS  Google Scholar 

  13. J. M. Delgado-Lopez, M. Iafisco, I. Rodriguez-Ruiz and J. Gomez-Morales, J. Inorg. Biochem., 127, 261 (2013).

    Article  CAS  Google Scholar 

  14. K. L. Lin, C. T. Wu and J. Chang, Acta Biomater., 10, 4071 (2014).

    Article  CAS  Google Scholar 

  15. M. Sadat-Shojai, M. T. Khorasani and A. Jamshidi, J. Cryst. Growth, 361, 73 (2012).

    Article  CAS  Google Scholar 

  16. H. Ito, Y. Oaki and H. Imai, Cryst. Growth Des., 8, 1055 (2008).

    Article  CAS  Google Scholar 

  17. Y. Y. Jiang, Y. J. Zhu, F. Chen and J. Wu, Ceram. Int., 41, 6098 (2015).

    Article  CAS  Google Scholar 

  18. N. Eliaz and N. Metoki, Materials, 10, 334 (2017).

    Article  Google Scholar 

  19. A. Haider, S. Haider, S. S. Han and I. K. Kang, RSC Adv., 7, 7442 (2017).

    Article  CAS  Google Scholar 

  20. A. Fihri, C. Len, R. S. Varma and A. Solhy, Coord. Chem. Rev., 347, 48 (2017).

    Article  CAS  Google Scholar 

  21. A. C. Tas, J. Am. Ceram. Soc., 92, 2907 (2009).

    Article  CAS  Google Scholar 

  22. Y. R. Cai and R. K. Tang, J. Mater. Chem., 18, 3775 (2008).

    Article  CAS  Google Scholar 

  23. D. Q. Xiao, Z. Tan, Y. K. Fu, K. Duan, X. T. Zheng, X. Lu and J. Weng, Ceram. Int., 40, 10183 (2014).

    Article  CAS  Google Scholar 

  24. A. Shamsuddin and J. von Fraunhofer, US Pattern Application Publication, US 2007/0212449 A1 (2007).

    Google Scholar 

  25. F. Grases, M. Ramis and A. Costa-Bauzá, Urol. Res., 28, 136 (2000).

    Article  CAS  Google Scholar 

  26. D. Q. Xiao, F. Yang, X. Zhou, Z. Chen, K. Duan, J. Weng and G. Feng, RSC Adv., 7, 44371 (2017).

    Article  CAS  Google Scholar 

  27. Z. Q. He, C. W. Honeycutt, T. Q. Zhang and P. M. Bertsch, J. Environ. Qual., 35, 1319 (2006).

    Article  CAS  Google Scholar 

  28. T. Goto, I. Y. Kim, K. Kikuta and C. Ohtsuki, Ceram. Int., 38, 1003 (2012).

    Article  CAS  Google Scholar 

  29. L. J. Hao, H. Yang, S. L. Du, N. R. Zhao and Y. J. Wang, Mater. Lett., 131, 252 (2014).

    Article  CAS  Google Scholar 

  30. M. Dardouri, J. P. Borges and A. D. Omrani, Ceram. Int., 43, 3784 (2017).

    Article  CAS  Google Scholar 

  31. R. X. Sun, L. L. Yang, Y. X. Zhang, F. Chu, G. Y. Wang, Y. P. Lv and K. Z. Chen, CrystEngComm, 18, 8030 (2016).

    Article  CAS  Google Scholar 

  32. K. Ganesan and M. Epple, New J. Chem., 32, 1326 (2008).

    Article  CAS  Google Scholar 

  33. J. H. Han and S. Chung, Appl. Chem. Eng., 29, 740 (2018).

    Google Scholar 

  34. M. Yoshimura, P. Sujaridworakun, F. Koh, T. Fujiwara, D. Pongkao and A. Ahniyaz, Mater. Sci. Eng. C, 24, 521 (2004).

    Article  Google Scholar 

  35. M. J. Larsen, A. Thorsen and S. J. Jensen, Calcified Tissue Int., 37, 189 (1985).

    Article  CAS  Google Scholar 

  36. W. Gelsema, C. De Ligny, A. Remijnse and H. Blijleven, Recueil. des. Travaux. Chimiques. Des. Pays., 85, 647 (1966).

    Article  CAS  Google Scholar 

  37. X. Y. Liu, Bioinspiration: from nano to micro scales, Springer, New York (2012).

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Korea (NRF-2015R1D1A1 A01059580 and NRF-2019R1F1A1060060), by the Nano-Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2009–0082580), and by the Basic Core TechTechnology Development Program for the Oceans and the Polar Regions of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2015M1A5A1037054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungwook Chung.

Supporting Information

11814_2020_496_MOESM1_ESM.pdf

Solvo-hydrothermal synthesis of calcium phosphate nanostructures from calcium inositol hexakisphosphate precursor in water-ethanol mixed solutions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, JH., Pack, S.P. & Chung, S. Solvo-hydrothermal synthesis of calcium phosphate nanostructures from calcium inositol hexakisphosphate precursor in water-ethanol mixed solutions. Korean J. Chem. Eng. 37, 891–897 (2020). https://doi.org/10.1007/s11814-020-0496-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0496-3

Keywords

Navigation