Skip to main content
Log in

Which electrode is better for biomass valorization: Cu(OH)2 or CuO nanowire?

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

2,5-furandicarboxylic acid (FDCA), one of the key building block for replacing petroleum-derived tereph-thalic acid, is utilized as the source of bioplastics, pharmaceuticals. Herein, free-standing Cu(OH)2 and CuO nanowires as electrode were examined to disclose the effects of crystal structure and chemical formation based on copper oxide in electrocatalytic 5-Hydroxymethylfurfural (HMF) oxidation to FDCA in 0.1 M KOH solution. We introduced on three-dimensional copper foam (CuF) with high porosity as copper source and substrate with high conductivity free-standing Cu(OH)2 and CuO nanowires (NWs) on the substrate by inorganic polymerization and calcination for electrochemical HMF oxidation. This was enabled by square-planar coordination (σx2-y2) of Cu2+ ions in (001) crystal faces of Cu(OH)2 crystal. As a result of stacking with hydrogen bonds, free-standing Cu(OH)2 NWs on the substrate was formed. There was no change in the morphology of the nanowire arrays, but the active sites from a plane area per surface-exposed Cu atoms by transformation of Cu(OH)2 to CuO NWs increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Bozell and G. R. Petersen, Green Chem., 12, 539 (2010).

    Article  CAS  Google Scholar 

  2. A. J. J. E. Eerhart, A. P. C. Faaij and M. K. Patel, Energy Environ. Sci., 5, 6407 (2012).

    Article  CAS  Google Scholar 

  3. A. Corma, S. Iborra and A. Velty, Chem. Rev., 107, 2411 (2007).

    Article  CAS  Google Scholar 

  4. B. Agarwal, K. Kailasam, R. S. Sangwan and S. Elumalai, Renew. Sustain. Energy Rev., 82, 2408 (2018).

    Article  CAS  Google Scholar 

  5. Z. Zhang and K. Deng, ACS Catal., 5, 6529 (2015).

    Article  CAS  Google Scholar 

  6. S. E. Davis, L. R. Houk, E. C. Tamargo, A. K. Datye and R. J. Davis, Catal. Today, 160, 55 (2011).

    Article  CAS  Google Scholar 

  7. X. Liu, J. Xiao, H. Ding, W. Zhong, Q. Xu, S. Su and D. Yin, Chem. Eng. J., 283, 1315 (2016).

    Article  CAS  Google Scholar 

  8. N. Li, S. Tang and X. Meng, J. Mater. Sci. Technol., 31, 30 (2015).

    Article  CAS  Google Scholar 

  9. H. Ait Rass, N. Essayem and M. Besson, ChemSusChem, 8, 1206 (2015).

    Article  CAS  Google Scholar 

  10. H. G. Cha and K.-S. Choi, Nat. Chem., 7, 328 (2015).

    Article  CAS  Google Scholar 

  11. L. Özcan, P. Yalçın, O. Alagöz and S. Yurdakal, Catal. Today, 281, 205 (2017).

    Article  CAS  Google Scholar 

  12. N. Jiang, B. You, R. Boonstra, I. M. Terrero Rodriguez and Y. Sun, ACS Energy Lett., 1, 386 (2016).

    Article  CAS  Google Scholar 

  13. X. Tong, L. Yu, H. Chen, X. Zhuang, S. Liao and H. Cui, Catal. Commun., 90, 91 (2017).

    Article  CAS  Google Scholar 

  14. Y.-B. Huang, M.-Y. Chen, L. Yan, Q.-X. Guo and Y. Fu, ChemSusChem, 7, 1068 (2014).

    Article  CAS  Google Scholar 

  15. M. J. Kang, H. Park, J. Jegal, S. Y. Hwang, Y. S. Kang and H. G. Cha, Appl. Catal. B, 242, 85 (2019).

    Article  CAS  Google Scholar 

  16. Y. Feng, T. Jiao, J. Yin, L. Zhang, L. Zhang, J. Zhou and Q. Peng, Nanoscale Res. Lett., 14, 78 (2019).

    Article  CAS  Google Scholar 

  17. F. Zhan, R. Wang, J. Yin, Z. Han, L. Zhang, T. Jiao, J. Zhou, L. Zhang and Q. Peng, RSC Adv., 9, 878 (2019).

    Article  CAS  Google Scholar 

  18. X. Wen, W. Zhang and S. Yang, Langmuir, 19, 5898 (2003).

    Article  CAS  Google Scholar 

  19. C.-T. Hsieh, J.-M. Chen, H.-H. Lin and H.-C. Shih, Appl. Phy s. Lett., 82, 3316 (2003).

    Article  CAS  Google Scholar 

  20. Z. Li, Y. Chen, Y. Xin and Z. Zhang, Sci. Rep., 5, 16115 (2015).

    Article  CAS  Google Scholar 

  21. W. Zhang, X. Wen and S. Yang, Inorg. Chem., 42, 5005 (2003).

    Article  CAS  Google Scholar 

  22. C. Kim, K. M. Cho, A. Al-Saggaf, I. Gereige and H.-T. Jung, ACS Catal., 8, 4170 (2018).

    Article  CAS  Google Scholar 

  23. H. Ming, K. Pan, Y. Liu, H. Li, X. He, J. Ming, Z. Ma and Z. Kang, J. Cryst. Growth, 327, 251 (2011).

    Article  CAS  Google Scholar 

  24. P. Wang, C. Qi, L. Hao, P. Wen and X. Xu, J. Mater. Sci. Technol., 35, 285 (2019).

    Article  Google Scholar 

  25. L. Meng, W. Tian, F. Wu, F. Cao and L. Li, J. Mater. Sci. Technol., 35, 1740 (2019).

    Article  Google Scholar 

  26. J. Huang, H. Li, Y. Zhu, Q. Cheng, X. Yang and C. Li, J. Mater. Chem. A, 3, 8734 (2015).

    Article  CAS  Google Scholar 

  27. M. J. Kang and Y. S. Kang, J. Mater. Chem. A, 3, 15723 (2015).

    Article  CAS  Google Scholar 

  28. C.-C. Hou, W.-F. Fu and Y. Chen, ChemSusChem, 9, 2069 (2016).

    Article  CAS  Google Scholar 

  29. I. G. Casella and M. Gatta, J. Electroanal. Chem., 494, 12 (2000).

    Article  CAS  Google Scholar 

  30. J. Yu and J. Ran, Energy Environ. Sci., 4, 1364 (2011).

    Article  CAS  Google Scholar 

  31. W. H. Leng, Z. Zhang, J. Q. Zhang and C. N. Cao, J. Phys. Chem. B, 109, 15008 (2005).

    Article  CAS  Google Scholar 

  32. O. Casanova, S. Iborra and A. Corma, ChemSusChem, 2, 1138 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Program (NRF-2019R1C1C1004210) through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT and Kore a Research Institute of Chemical Technology (KR ICT) core project (SI1941-20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung Yeon Hwang or Hyun Gil Cha.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, H.M., Kang, M.J., Kim, KA. et al. Which electrode is better for biomass valorization: Cu(OH)2 or CuO nanowire?. Korean J. Chem. Eng. 37, 556–562 (2020). https://doi.org/10.1007/s11814-020-0474-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0474-9

Keywords

Navigation