Skip to main content

Advertisement

Log in

Use of nitrate-nitrogen concentration for controlling source, cellular matter production and oxygen consumption for sewage treatment

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Carbon saving, oxygen consumption reduction and cellular matter production reduction of Modified University of Cape Town (MUCT) process under different nitrate-nitrogen concentration in the main anoxic section was studied. This was investigated by material balance analysis, biochemical reaction process and its metrology of ordinary heterotrophic bacteria, denitrifying bacteria, nitrifying bacteria and phosphorus-accumulating bacteria. The flow and distribution of carbon, nitrogen, and oxygen in the MUCT, and the influence of the regulation of the c(NO3) on the carbon source, cellular matter production, and oxygen consumption of the process were explained in detail. In the programmable logic controller (PLC) automatic control system, the circulating flow rate of nitrate was set as the controlled variable. Adopting the feedback control structure, c(NO3) was altered at 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 mg·17−1, respectively. In this experimental study, the quality of influent and other operation design parameters remained unchanged. The results showed that the effluent quality was at its best when c(NO3) was controlled at 2.0–4.0 mg/L. Again, the distribution of chemical oxygen demand (COD) in the anaerobic section was between phosphorus-accumulating bacteria, common heterotrophic bacteria and denitrifying bacteria, and the distribution was related to c(NO3). Due to this phenomenon, the distribution of nitrate-nitrogen between denitrifying bacteria and denitrifying phosphorus-accumulating bacteria, and poly-hydroxy alkanoates (PHA) between denitrifying phosphorus-accumulating bacteria and aerobic phosphorus-accumulating bacteria was changed. Carbon source of 110.0 kg acetic acid/103 m3 sewage was saved, while the cell material output was reduced by 37.5%, and the oxygen consumption of 51.1 kg O2/103 m3 sewage was reduced. In the MUCT process, the regulation of c(NO3) enhanced the denitrifying phosphorus uptake performance of the main anoxic section and obtained good carbon source savings, reduction of cellular matter production, and reduction of oxygen consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Guo, T. Y. Huang and T. R. Long, Tech. Eq. Env. Pollut. Control, 1, 8 (2000).

    CAS  Google Scholar 

  2. J. Liu and T. Y. Gao, J. Tongji Univ., 23, 387 (1995).

    CAS  Google Scholar 

  3. D. Mulkerrins, A. D. W. Dobson and E. Colleran, Environ. Int., 30, 249 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. A. Gerber, R. H. Villiers, E. S. Mostert and C. J. J. Riet, The Phenomenon of Simultaneous Phosphate Uptake and Release and its Importance in Biological Nutrient Removal in: Biogical Phosphate Removal from Wastewaters, Pergamon Press, Oxford (1987).

    Book  Google Scholar 

  5. Y. Comeau, W. K. Oldham and K. J. Hall, Dynamics of Carbon Reserves in Biological Dephosphatation of Wastewater, in: Biological Phosphate Removal from Wastewaters, Pergamon Press, Oxford (1987).

    Book  Google Scholar 

  6. T. Kuba, M. C. M. V. Loosdrecht and J. J. Heijnen, Water Res., 30, 1702 (1996).

    Article  CAS  Google Scholar 

  7. J. Guerrero, A. Guisasola and J. A. Baeza, Water Res., 45, 4793 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. W. Zeng, L. Li, Y. Y. Yang, X. D. Wang and Y. Z. Peng, Enzyme Microb. Technol., 48, 134 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Q. Y. Yuan and J. Oieszkiewicz, Desalin. Water Treat., 22, 72 (2010).

    Article  CAS  Google Scholar 

  10. A. G. Kapagiannidis, I. Zafiriadis and A. Aivasidis, New Biotechnol., 30, 227 (2013).

    Article  CAS  Google Scholar 

  11. Q. L. He, H. Y. Wang, X. J. Yang, J. Zhou, Y. P. Ye, D. Chen and K. Yang, Acta Sci. Circum., 36, 134 (2016).

    CAS  Google Scholar 

  12. W. T. Zhang, X. F. Xue, H. T. Pang, J. Zhang, D. Li and Y. Z. Peng, CIESC J., 66, 1925 (2015).

    CAS  Google Scholar 

  13. J. Ma, L. Li, X. J. Yu, X. F. Wei and J. L. Liu, Environ. Sci., 36, 597 (2015).

    CAS  Google Scholar 

  14. J. M. Duan, W. Li, K. Zhao and J. Krampe, Desalin. Water Treat., 40, 24 (2012).

    Article  CAS  Google Scholar 

  15. M. Henze, G. Willi, M. Takahashi, M. Tomonori, C. W. Mark, R. M. Gerrit and C. M. V L. Mark, Water Sci. Technol., 39, 165 (1999).

    Article  CAS  Google Scholar 

  16. H. T. Yu and M. Li, Acta Microbiol. Sin., 55, 264 (2015).

    CAS  Google Scholar 

  17. Q. X. Hua, G. C. Zhu, J. Yuan and X. W. Lv, Res. Environ. Sci., 27, 749 (2014).

    CAS  Google Scholar 

  18. S. C. Yang, X. Z. Wang, Y. Pan, D. Deng, G. B. Liu and G. A. Zhang, Sci. Technol. Rev., 30, 75 (2012).

    CAS  Google Scholar 

  19. J. Sui, J. Li and F. G. Zhang, China Water Wastewater, 30, 111 (2014).

    CAS  Google Scholar 

  20. Y. Sun, Z. Chen, G. X. Wu, Q. Y. Wu, F. Zhang, Z. B. Niu and H. Y. Hu, J. Cleaner Production, 131, 1 (2016).

    Article  CAS  Google Scholar 

  21. Y. Yang, Y. S. Ok, K. H. Kim, E. E. Kwon and Y. F. Tsang, Sci. Total Environ., 596–597, 303 (2017).

    Article  PubMed  CAS  Google Scholar 

  22. Y. Sun, F. Zhang and H. Y. Hu, Water Wastewater Eng., 40, 5167 (2014).

    Google Scholar 

  23. Y. L. Sun, G. X. Wu and H. Y. Hu, Chinese J. Environ. Eng., 7, 2885 (2013).

    CAS  Google Scholar 

  24. R. L. Olsen, R. W. Chappell and J. C. Loftis, Water Res., 46, 3110 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. L. X. Zou, H. B. Li, K. K. Zheng, Y. Wang, S. Wang and J. Li, Water Wastewater Eng., 45, 39 (2019).

    Google Scholar 

  26. L. Xiong, D. J. Bian, J. Wu, S. S. Ai, S. Y. Zhu and L. Zhong, Environ. Eng., 35, 36 (2017).

    Google Scholar 

  27. J. Londong, Water Sci. Technol., 26, 1087 (1992).

    Article  CAS  Google Scholar 

  28. Z. R. Hu, M. C. Wentzel and G. A. Ekama, Water Res., 36, 4927 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. X. L. Wang, D. D. Yuan, L. Bai, Z. Q. Li, Y. Yu, X. D. Qin, X. X. Zhang and K. Zhao, Environ. Sci., 37, 3906 (2016).

    Google Scholar 

  30. X. L. Wang, T. H. Song, B. Y. Yin, J. W. Li, Z. Q. Li and Y. Yu, Environ. Sci., 36, 2617 (2015).

    CAS  Google Scholar 

  31. X. L. Wang, J. Yin, S. K. Li, X. D. Wei and S. Gao, Environ. Sci., 32, 3412 (2011).

    Google Scholar 

  32. X. L. Wang, H. Lu, T. H. Song and K. Zhao, Korean J. Chem. Eng., 36, 411 (2019).

    Article  CAS  Google Scholar 

  33. X. L. Wang, T. H. Song and X. D. Yu, Desalin. Water Treat., 56, 1877 (2015).

    Article  CAS  Google Scholar 

  34. X. L. Wang, N. Li, T. Xie, F. Zhang, L. P. Dong and B. Y. Yin, J. Donghua Univ., 31, 278 (2014).

    Google Scholar 

  35. G. B. Zhu, Y. Z. Peng, S. Y. Wang, S. Y. Wu and B. Ma, Chem. Eng. J., 131, 319 (2007).

    Article  CAS  Google Scholar 

  36. A. Soares, P. Kampas, S. Maillard, E. Wood, J. Brigg, M. Tillotson, S. A. Parsons and E. Cartmell, J. Hazard. Mater., 175, 733 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. M. H. Huang, Y. M. Li and G. W. Gu, Desalination, 262, 36 (2010).

    Article  CAS  Google Scholar 

  38. I. G. München and I. K. Braunschweig, Design of Single Stage Activated Sludge Wastewater Treatment Plant, GFA Publishing Company, Hennef (2000).

    Google Scholar 

  39. Water Environment Federation, Design of Municipal Wastewater Treatment Plants, Volume 2: Liquid Treatment Processes, McGraw-Hill, Inc, New York (2010).

    Google Scholar 

  40. Shanghai Municipal Engineering Design Institute (Group) Co., LTD, Code for design of outdoor wastewater engineering, China Planning Press, Beijing (2016).

    Google Scholar 

  41. American Public Health Association (APHA), Standard method for examination of water and wastewater, 22ndEd., APHA, AWWA, WPCF, Washington (2012).

    Google Scholar 

  42. D. Brdjanovic, M. C. M. V. Loosdrechtt, C. M. Hooijmans, T. Mino, G. J. Alaerts and J. J. Heijnen, Water Sci. Technol., 39, 37 (1999).

    Article  CAS  Google Scholar 

  43. L. S. Serafim, P. C. Lemos, C. Levantesi, V. Tandoi, H. Santos and M. A. MReis, J. Microbiol. Meth., 51, 1 (2002).

    Article  CAS  Google Scholar 

  44. Y. Comeau, J. H. Kenneth and K. O. William, Appl. Environ. Microbiol., 54, 2325 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. A. Lundin, Method Enzymol., 305, 346 (2000).

    Article  CAS  Google Scholar 

  46. M. Henze, P. Harremoës, J. la C. Jansen and E. Arvin, Wastewater Treatment. Biological and Chemical Processes, 3rdEd., Springer, Berlin (2002).

    Google Scholar 

  47. S. H. Chuang and C. F. Ouyang, Water Res., 34, 2283 (2000).

    Article  CAS  Google Scholar 

  48. P. S. Barker and P. L. Dold, Water Res., 29, 633 (1995).

    Article  CAS  Google Scholar 

  49. T. Kuba and M. C. M. V. Loosdrechtt, Water Sci. Technol., 27, 241 (1993).

    Article  CAS  Google Scholar 

  50. T. Kuba and M. C. M. V. Loosdrechtt, Water Sci. Technol., 34, 33 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 51808254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, X. & Lu, H. Use of nitrate-nitrogen concentration for controlling source, cellular matter production and oxygen consumption for sewage treatment. Korean J. Chem. Eng. 37, 249–262 (2020). https://doi.org/10.1007/s11814-019-0447-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0447-z

Keywords

Navigation