Skip to main content
Log in

Flow characteristics within the wall boundary layers of swirling steam flow in a pipe comprising horizontal and inclined sections

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Handling and utilization of steam flow efficiently to obtain various tangible industrial outcomes relies mainly upon how to optimize various flow parameters like boundary layer thickness, skewness, shear stress, and turbulent dissipation for minimum losses such as pressure and heat. Swirling steam flow, driven by a propeller through a circular duct along horizontal and inclined surfaces presents an interesting flow regime that includes the boundary layer flows close to the wall of the pipe and weak and uniform flow that prevails across the inner region of the pipe. Such flow was investigated here with a specially designed experimental facility. Convective Instabilities were observed that propagate along the axial direction in a nonlinear fashion. It was observed that the operating conditions could be optimized for measuring the shear stresses based on the intersection of the profiles under the effect of variations in the inlet pressure of steam and the rotational speed of the propeller. We found that the flow transformed from positive to negative skewness when the rotational speed of the propeller was raised from 4–14 thousand per minute at 10 bars of constant inlet steam pressure. More area came under the effect of reduced skin friction when the rotational speed of the propeller was raised. More turbulent energy was found to be dissipated when the rotational speed of the propeller was raised. It was found that yet the dissipation of the turbulent energy takes place under the joint effect of inlet pressure of steam and the rotational speed of the propeller, but the exact effect of any one of these two operating parameters still needs to be determined and requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. B. Wallace, US5407305A: Continuous dense phase conveying method utilizing high pressure gas at predetermined gas pressures within a conveying pipe (1993).

  2. E. B. Wallace, Continuous dense phase conveying method utilizing high pressure gas at predetermined gas pressures within a conveying pipe (1993).

  3. C. G. Caro, N. V. Watkins, P. L. Birch and M. Yacoub, WO2004083706A1 — Tubing and piping for multiphase flow — Google Patents, 2004.

  4. F. Kato, T. Onoda and T. Takano, Japanese Patent, JPH (1998).

  5. R.N. Meroney, Measurements of Turbulent Boundary Layer Growth over a Longitudinally Curved Surface (1974).

  6. T. Tandiono, S. H. Winoto and D. A. Shah, Phys. Fluids, 20, 094103 (2008).

    Article  CAS  Google Scholar 

  7. T. Tandiono, S. H. Winoto and D. A. Shah, Phys. Fluids, 21, 084106 (2009).

    Article  CAS  Google Scholar 

  8. T. Tandiono, S. H. Winoto and D. A. Shah, J. Vis., 12, 195 (2009).

    Article  Google Scholar 

  9. H. Mitsudharmadi, S. H. Winoto and D. A. Shah, Phys. Fluids, 17, 124102 (2005).

    Article  CAS  Google Scholar 

  10. T. Tandiono, S. H. Winoto and D. A. Shah, Phys. Fluids, 25, 104104 (2013).

    Article  CAS  Google Scholar 

  11. R. Mukund, P. R. Viswanath, R. Narasimha, A. Prabhu and J. D. Crouch, J. Fluid Mech., 566, 97 (2006).

    Article  Google Scholar 

  12. N. R. Tichenor, R. A. Humble and R. D. W. Bowersox, J. Fluid Mech., 722, 187 (2013).

    Article  CAS  Google Scholar 

  13. J. D. Swearingen and R. F. Blackwelder, J. Fluid Mech., 182, 255 (1987).

    Article  CAS  Google Scholar 

  14. P. Bradshaw, Effects of streamline curvature on turbulent flow, No. AGARD-AG-169. Advisory Group for Aerospace Research and Development Paris (France) (1973).

  15. P. Bradshaw, J. Fluid Mech, 63, 449 (1974).

    Article  Google Scholar 

  16. L. Yang, H. Zare-Behtash, E. Erdem and K. Kontis, Exp. Therm. Fluid Sci., 40, 50 (2012).

    Article  CAS  Google Scholar 

  17. M. Jayaram, M. W. Taylor and A. J. Smits, J. Fluid Mech., 175, 343 (1987).

    Article  Google Scholar 

  18. W. Flaherty and J. M. Austin, Phys. Fluids, 25, 106106 (2013).

    Article  CAS  Google Scholar 

  19. J. F. Donovan, E. F. Spina and A.J. Smits, J. Fluid Mech, 259, 1 (1994).

    Article  Google Scholar 

  20. D. R. Smith and A. J. Smits, Exp. Fluids, 18, 363 (1995).

    Article  Google Scholar 

  21. K. J. Franko and S. Lele, Phys. Fluids, 26, 024106 (2014).

    Article  CAS  Google Scholar 

  22. J.-H. Lee and H. J. Sung, Int. J. Heat Fluid Flow, 29, 568 (2008).

    Article  CAS  Google Scholar 

  23. Z. Harun, J. P. Monty, R. Mathis and I. Marusic, J. Fluid Mech., 715, 477 (2013).

    Article  Google Scholar 

  24. S. Shu and N. Yang, Chinese J. Chem. Eng., 26, 31 (2018).

    Article  CAS  Google Scholar 

  25. S. Shu and N. Yang, Chem. Eng. Sci., 181, 132 (2018).

    Article  CAS  Google Scholar 

  26. A. Pradhan and S. Yadav, Procedia Eng., 127, 177 (2015).

    Article  Google Scholar 

  27. H. Sajjadi, M. Salmanzadeh, G. Ahmadi and S. Jafari, Comput. Fluids, 150, 66 (2017).

    Article  Google Scholar 

  28. H. Sajjadi, M. Salmanzadeh, G. Ahmadi and S. Jafari, Particuology, 30, 62 (2017).

    Article  Google Scholar 

  29. A. Fakhari and T. Lee, Comput. Fluids, 107, 205 (2015).

    Article  Google Scholar 

  30. LM35 LM35 Precision Centigrade Temperature Sensors, 1999. http://www.ti.com.

  31. M. S. CORPORATION, Pressure Sensor: PCB Model 113B27, PCB Piezotronics (2019).

  32. Subsea Technology and Equipments — Oil&Gas Portal, http://www.Oil-Gasportal.Com. (n.d.).

  33. M. K. King, R. R. Rothfus and R. I. Kermode, AIChE J., 15, 837 (1969).

    Article  Google Scholar 

  34. T. E. Stanton, D. Marshall and C. N. Bryant, Proc. R. Soc. A Math. Phys. Eng. Sci., 97, 413 (1920).

    Article  Google Scholar 

  35. J. Džunić, M. S. Petković and L. D. Petković, Appl. Math. Comput., 217, 7612 (2011).

    Google Scholar 

  36. M. S. Petković, B. Neta, L. D. Petković and J. Džunić, Appl. Math. Comput., 226, 635 (2014).

    Google Scholar 

  37. J. R. Sharma and H. Arora, Appl. Math. Comput., 273, 924 (2016).

    Google Scholar 

  38. P. K. Swanee and A. K. Jain, J. Hydraul. Div, 102(5), 657 (1976).

    Google Scholar 

  39. T. G. Lester, ASHRAE J., 44, 41 (2002).

    Google Scholar 

  40. X. Zhang, X. Sun and X. Xin, Vortex Characteristics of Spiral Flow in Pipe, in: Adv. Water Resour. Hydraul. Eng., Springer Berlin Heidelberg, Berlin, Heidelberg, 2163 (2009).

    Chapter  Google Scholar 

  41. D. W. Baker, Decay of swirling turbulent flow of incompressible fluids in long pipes, in: Proceeding Symp. Flow-Its Meas. Control Sci. Ind., 301 (1974).

  42. Y. Senoo and T. Nagata, Bull. JSME, 15, 1514 (1972).

    Article  Google Scholar 

  43. T. Benson, Dynamic Pressure of a Moving Fluid Element, pp. 1, NASA (2014).

  44. C. H. Gibson, G. R. Stegen and R. B. Williams, J. Fluid Mech., 41, 153 (1970).

    Article  Google Scholar 

  45. J. C. Wyngaard, J. Fluid Mech., 48, 763 (1971).

    Article  Google Scholar 

  46. R. A. Antonia and C.W. Van Atta, J. Fluid Mech., 67, 273 (1975).

    Article  Google Scholar 

  47. P. G. Mestayer, C.H. Gibson, M.F. Coantic and A.S. Patel, Phys. Fluids, 19, 1279 (1976).

    Article  Google Scholar 

  48. K. R. Sreenivasan and R.A. Antonia, Phys. Fluids, 20, 1986 (1977).

    Article  Google Scholar 

  49. R. M. C. So and G. L. Mellor, An experimental investigation of turbulent boundary layers along curved surfaces, NASA (1972).

  50. B. R. Ramaprian and B. G. Shivaprasad, J. Fluid Mech., 85, 273 (1978).

    Article  CAS  Google Scholar 

  51. A. J. Smits, J. A. Eaton and P. Bradshaw, J. Fluid Mech., 94, 243 (1979).

    Article  Google Scholar 

  52. S. H. Winoto, H. Mitsudharmadi and D. A. Shah, J. Vis., 8, 315 (2005).

    Article  Google Scholar 

  53. R. N. Meroney and P. Bradshaw, AIAA J., 13, 1448 (1975).

    Article  Google Scholar 

  54. G. Zarbi and A. J. Reynolds, Fluid Dyn. Res., 7, 151 (1991).

    Article  Google Scholar 

  55. A. Kolmogorov, The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers, Izd-vo Akademii nauk SSSR (1941).

  56. S. Kida and S.A. Orszag, J. Sci. Comput., 5, 85 (1990).

    Article  Google Scholar 

Download references

Acknowledgement

The authors are thankful to University Kebangsaan Malaysia (UKM) for their support for this work through Grant [Grant Reference No: MI-2018-008].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afrasyab Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Takriff, M.S., Rosli, M.I. et al. Flow characteristics within the wall boundary layers of swirling steam flow in a pipe comprising horizontal and inclined sections. Korean J. Chem. Eng. 37, 19–36 (2020). https://doi.org/10.1007/s11814-019-0404-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0404-x

Keywords

Navigation