Skip to main content
Log in

Process optimization and synthesis of lanthanum-cobalt perovskite type nanoparticles (LaCoO3) prepared by modified proteic method: Application of response surface methodology

  • Rapid Communication
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Due to increasing interest in the application of perovskites as promising adsorbents, the present study looks at how central composite design (CCD), a subset of response surface methodology (RSM), can statistically play a role in producing optimum lanthanum oxide-cobalt perovskite type nanoparticles (LaCoO3) by using a modified proteic synthesis method. The optimum LaCoO3 produced was tested for its capability in removing methyl orange (MO) and rhodamine B (RhB) dyes from aqueous solution. Calcination temperature and calcination time were optimized with the responses being percentage yield, MO and RhB removal. The best temperature and calcination time obtained were 775 °C and 62 mins, respectively, giving good and appreciable values for the three responses. The resulting optimal LaCoO3 was characterized by Fourier transform infra-red (FTIR), ultraviolet-visible spectrophotometry (UV/vis), scanning electron microscopy (SEM), pH of zero point charge (pHpzc) as well as BET analysis, yielding a mesoporous adsorbent with surface area of 61.130 m2 g−1 as well as 223.55 and 239.45 mg g−1 as the monolayer adsorption capacity values for MO and RhB, respectively. Freundlich model was the best in describing the equilibrium adsorption data with respect to both MO and RhB with the kinetic data for the two dyes both obeying pseudo-second-order kinetics model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. E. Argun, D. Güclü and M. Karatas, J. Ind. Eng. Chem., 20, 1079 (2014).

    CAS  Google Scholar 

  2. M. Shaban, M. R. Abukhadra, A. A. Parwaz Khan and B. M. Jibali, J. Taiwan Inst. Chem. Eng., 82, 102 (2018).

    CAS  Google Scholar 

  3. F. Banat, S. Al-Asheh, R. Al-Ahmad and F. Bni-Khalid, Bioresour. Technol., 98, 3017 (2007).

    CAS  PubMed  Google Scholar 

  4. G. Crini, Bioresour. Technol., 97, 1061 (2006).

    CAS  PubMed  Google Scholar 

  5. E. Brillas and C. A. Martínez-Huitle, Appl. Catal. B, 166–167, 603 (2015).

    Google Scholar 

  6. V. Khandegar and A. K. Saroha, J. Environ. Manage., 128, 949 (2013).

    CAS  PubMed  Google Scholar 

  7. M. Bradha, T. Vijayaraghavan, S. P. Suriyaraj, R. Selvakumar and A. M. Ashok, J. Rare Earths, 33, 160 (2015).

    CAS  Google Scholar 

  8. T. Santhi, A. L. Prasad and S. Manonmani, Arab. J. Chem., 7, 494 (2014).

    CAS  Google Scholar 

  9. Y.-D. Chen, W.-Q. Chen, B. Huang and M.-J. Huang, Chem. Eng. Res. Des., 91, 1783 (2013).

    CAS  Google Scholar 

  10. M. H. Dehghani, A. Zarei, A. Mesdaghinia, R. Nabizadeh, M. Ali-mohammadi, M. Afsharnia and G. McKay, Chem. Eng. Res. Des., 140, 102 (2018).

    CAS  Google Scholar 

  11. Z. N. Garba, F. B. S. Shikin and A. R. Afidah, J. Chem. Eng. Chem. Res., 2, 623 (2015).

    CAS  Google Scholar 

  12. Z. N. Garba, A. R. Afidah and B. Z. Bello, J. Environ. Chem. Eng., 3, 2892 (2015).

    CAS  Google Scholar 

  13. H. Tavakkoli and M. Yazdanbakhsh, Micropor. Mesopor. Mater., 176, 86 (2013).

    CAS  Google Scholar 

  14. M. Yazdanbakhsh, H. Tavakkoli and S. M. Hosseini, Desalination, 281, 388 (2011).

    CAS  Google Scholar 

  15. M. Algueró, P. Ramos, R. Jiménez, H. Amorín, E. Vila and A. Castro, Acta Mater., 60, 1174 (2012).

    Google Scholar 

  16. C. Moure and O. Peña, Solid State Chem., 43, 148 (2015).

    Google Scholar 

  17. R. G. Shetkar and A. V. Salker, J. Mater. Sci. Technol., 26, 1098 (2010).

    CAS  Google Scholar 

  18. R. Guo, T. Jiao, R. Li, Y. Chen, W. Guo, L. Zhang, J. Zhou, Q. Zhang and Q. Peng, ACS Sustainable Chem. Eng., 6, 1279 (2018).

    CAS  Google Scholar 

  19. K. Li, T. Jiao, R. Xing, G. Zou, J. Zhou, L. Zhang and Q. Peng, Sci. China Mater., 61, 728 (2018).

    CAS  Google Scholar 

  20. R. Guo, R. Wang, J. Yin, T. Jiao, H. Huang, X. Zhao, L. Zhang, Q. Li, J. Zhou and Q. Peng, Nanomater., 9, 127 (2019).

    Google Scholar 

  21. X. Huang, R. Wang, T. Jiao, G. Zou, F. Zhan, J. Yin, L. Zhang, J. Zhou and Q. Peng, ACS Omega, 4, 1897 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. A. G. Santos, J. O. Leite, M. J. B. Souza, I. F. Gimenez and A. M. Garrido Pedrosa, Ceram. Int., 44, 5743 (2018).

    CAS  Google Scholar 

  23. E. Grabowska, Appl. Catal. B, 186, 97 (2016).

    CAS  Google Scholar 

  24. Z. N. Garba and A. R. Afidah, J. Anal. Appl. Pyrol., 107, 306 (2014).

    CAS  Google Scholar 

  25. J. Nsor-Atindana, M. Chen, H. D. Goff, F. Zhong, H. R. Sharif and Y. Li, Carbohyd. Polym., 172, 159 (2017).

    CAS  Google Scholar 

  26. G. Thoorens, F. Krier, B. Leclercq, B. Carlin and B. Evrard, Int. J. Pharm., 473, 64 (2014).

    CAS  PubMed  Google Scholar 

  27. X. Zhang, Y. Wu, X. Li, X. Meng, H. Shi, Z. Wu and J. Zhang, Korean J. Chem. Eng., 36, 753 (2019).

    CAS  Google Scholar 

  28. Z. N. Garba, A. R. Afidah and S. A. Hamza, J. Environ. Chem. Eng., 2, 1423 (2014).

    CAS  Google Scholar 

  29. M. A. Ahmad and R. Alrozi, Chem. Eng. J., 165, 883 (2010).

    CAS  Google Scholar 

  30. C. W. Oo, M. J. Kassim and A. Pizzi, Ind. Crop. Prod., 30, 152 (2009).

    CAS  Google Scholar 

  31. W. S. Wan Ngah, S. Fatinathan and N. A. Yosop, Desalination, 272, 293 (2011).

    Google Scholar 

  32. L. T. Popoola, A. S. Yusuff, O. A. Adesina and M. A. Lala, J. Environ. Sci. Technol., 12, 65 (2019).

    Google Scholar 

  33. R. Baccar, P. Blánquez, J. Bouzid, M. Feki, H. Attiya and M. Sarrà, Fuel Proces. Technol., 106, 408 (2013).

    CAS  Google Scholar 

  34. M. Auta and B. H. Hameed, Chem. Eng. J., 175, 233 (2011).

    CAS  Google Scholar 

  35. H. Deng, L. Yang, G. Tao and J. Dai, J. Hazard. Mater., 166, 1514 (2009).

    CAS  PubMed  Google Scholar 

  36. S. Deng, Y. Nie, Z. Du, Q. Huang, P. Meng, B. Wang, J. Huang and G. Yu, J. Hazard. Mater., 282, 150 (2015).

    CAS  PubMed  Google Scholar 

  37. J. N. Sahu, J. Acharya and B. C. Meikap, Bioresour. Technol., 101, 1974 (2010).

    CAS  PubMed  Google Scholar 

  38. M. A. Ahmad and R. Alrozi, Chem. Eng. J., 171, 510 (2010).

    Google Scholar 

  39. M. K. B. Gratuito, T. Panyathanmaporn, R. A. Chumnanklang, N. Sirinuntawittaya and A. Dutta, Bioresour. Technol., 99, 4887 (2008).

    CAS  PubMed  Google Scholar 

  40. Ç. D. Şentorun-Shalaby, M. G. Uçak-Astarlioǧ Lu, L. Artok and Ç. Sarıcı, Micropor. Mesopor. Mater., 88, 126 (2006).

    Google Scholar 

  41. L. Zhang, B. Zhang, T. Wu, D. Sun and Y. Li, Colloids Surf., A: Physicochem. Eng. Aspects, 484, 118 (2015).

    CAS  Google Scholar 

  42. B. Tanhaei, A. Ayati, M. Lahtinen and M. Sillanpää, Chem. Eng. J., 259, 1 (2015).

    CAS  Google Scholar 

  43. T. Soltani and B.-K. Lee, J. Colloid Interface Sci., 481, 168 (2016).

    CAS  PubMed  Google Scholar 

  44. S. Wang, B. Yang and Y. Liu, J. Colloid Interface Sci., 507, 225 (2017).

    CAS  PubMed  Google Scholar 

  45. Z.-L. Cheng, Y.-X. Li and Z. Liu, Ecotoxicol. Environ. Safety, 148, 585 (2018).

    CAS  PubMed  Google Scholar 

  46. Y. Ma, X. Y. Wu and G. K. Zhang, Appl. Catal. B,-Environ., 205, 262 (2017).

    CAS  Google Scholar 

  47. J. C. Santos, M. J. B. Souza, M. E. Mesquita and A. M. G. Pedrosa, Sci. Plen., Sci. Plen., 8, 1 (2012).

    Google Scholar 

  48. G. Leofanti, M. Padovan, G. Tozzola and B. Venturelli, Catal. Today, 41, 207 (1998).

    CAS  Google Scholar 

  49. A. G. Margellou, I. T. Papadas, D. E. Petrakis and G. S. Armatas, Mater. Res. Bull., 83, 491 (2016).

    CAS  Google Scholar 

  50. Q. Q. Shi, J. Zhang, C. L. Zhang C. Li, B. Zhang, W.W. Hu and J. T. Xu, J. Environ. Sci., 22, 91 (2010).

    CAS  Google Scholar 

  51. C. H. C. Tan, S. Sabar and M. H. Hussin, South African J. Chem. Eng., 26, 11 (2018).

    Google Scholar 

  52. A. Benaicha and M. Omari, J. Fundam. Appl. Sci., 10, 132 (2018).

    CAS  Google Scholar 

  53. P. W. Atkins, T. L. Overton, J. P. Rourke and M. T. Weller, Shriver and Atkins’ W. H. Freeman and Company, 5th Ed. New York (2010).

  54. J. C. Santos, M. J. B. Souza, J. A. C. Ruiz, D. M. A. Melo, M. E. Mesquita and A. M. G. Pedrosa, J. Braz. Chem. Soc., 23, 1858 (2012).

    CAS  Google Scholar 

  55. C. J. Jones, Bookman, Porto Alegre, RS (2002).

  56. S. Hosseini, M. A. Khan, M. R. Malekbala, W. Cheah and T. S. Y. Choong, Chem. Eng. J., 171, 1124 (2011).

    CAS  Google Scholar 

  57. R. Huang, Q. Liu, J. Huo and B. Yang, Arab. J. Chem., 10, 24 (2017).

    CAS  Google Scholar 

  58. H. Z. Ma, B. Wang and X. Y. Luo, J. Hazard. Mater., 149, 492 (2007).

    CAS  PubMed  Google Scholar 

  59. S. Khamparia and D. Jaspal, J. Environ. Manage, 183, 786 (2016).

    CAS  PubMed  Google Scholar 

  60. P. K. Satapathy, M. Das and A. K Sahoo, Indian J. Chem. Technol., 21, 257 (2014).

    Google Scholar 

  61. M. Mohammadi, A. J. Hassani, A. R. Mohamed and G. D. Najafpour, J. Chem. Eng. Data, 55, 5777 (2010).

    CAS  Google Scholar 

  62. N. S. Maurya, A. K. Mittal, P. Cornel and E. Rother, Bioresour. Technol., 97, 512 (2006).

    CAS  PubMed  Google Scholar 

  63. T. Soltani and M. H. Entezari, Chem. Eng. J., 223, 145 (2013).

    CAS  Google Scholar 

  64. B. H. Hameed and M. I. El-Khaiary, J. Hazard. Mater., 159, 574 (2008).

    CAS  PubMed  Google Scholar 

  65. F. Hayeeye, M. Sattar, W. Chinpa and O. Sirichote, Colloids Surf., A: Physicochem. Eng. Aspects, 513, 259 (2017).

    CAS  Google Scholar 

  66. N. N. Bahrudin, M. A. Nawi and W. I. N. W. Ismail, Korean J. Chem. Eng., 35, 1450 (2018).

    CAS  Google Scholar 

  67. M. N. Anjum, K. M. Zia, L. Zhu, Haroon-ur-Rashid, M. N. Ahmad, M. Zuber and H. Tang, Korean J. Chem. Eng., 31, 2192 (2014).

    CAS  Google Scholar 

  68. J. Liu, S. Ma and L. Zang, Appl. Surf. Sci., 265, 393 (2013).

    CAS  Google Scholar 

  69. L. Zhai, Z. Bai, Y. Zhu, B. Wang and W. Luo, Chinese J. Chem. Eng., 26, 657 (2018).

    CAS  Google Scholar 

  70. M. Sattar, F. Hayeeye, W. Chinpa and O. Sirichote, J. Environ. Chem. Eng., 5, 3780 (2017).

    CAS  Google Scholar 

  71. L. Largitte and R. Pasquier, Chem. Eng. Res. Des., 112, 289 (2016).

    CAS  Google Scholar 

  72. L. Largitte and R. Pasquier, Chem. Eng. Res. Des., 109, 495 (2016).

    CAS  Google Scholar 

  73. L. Mouni, L. Belkhiri, J.-C. Bollinger, A. Bouzaza, A. Assadi, A. Tirri, F. Dahmoune, K. Madani and H. Remini, Appl. Clay Sci., 153, 38 (2018).

    CAS  Google Scholar 

  74. P. Saha and S. Chowdhury, Intech, 16, 349 (2011).

    Google Scholar 

  75. D. Duranoğlu, A. W. Trochimczuk and U. Beker, Chem. Eng. J., 187, 193 (2012).

    Google Scholar 

  76. S. Jiancheng, L. Renlong, W. Haiping, L. Zuohua, S. Xiaolong and T. Changyuan, J. Taiwan Inst. Chem. Eng., 82, 351 (2018).

    Google Scholar 

  77. G. Z. Kyzas, N. K. Lazaridis and A. C. Mitropoulos, Chem. Eng. J., 189–190, 148 (2012).

    Google Scholar 

  78. P. Liao, Z. Malik Ismael, W. Zhang, S. Yuan, M. Tong, K. Wang and J. Bao, Chem. Eng. J., 195–196, 339 (2012).

    Google Scholar 

  79. O. Hernandez-Ramirez and S. M. Holmes, J. Mater. Chem., 18, 2751 (2008).

    CAS  Google Scholar 

  80. N. M. Mahmoodi, B. Hayati, M. Arami and C. Lan, Desalination, 268, 117 (2011).

    CAS  Google Scholar 

  81. I. A. W. Tan, A. L. Ahmad and B. H. Hameed, J. Hazar. Mater., 164, 473 (2009).

    CAS  Google Scholar 

  82. Y Qiu, Z. Zheng, Z. Zhou and G. D. Sheng, Bioresour. Technol., 100, 5348 (2009).

    CAS  PubMed  Google Scholar 

  83. Y. Yu, B. N. Murthy, J. G. Shapter, K. T. Constantopoulos, N. H. Voelcker and A. V. Ellis, J. Hazard. Mater., 260, 330 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors humbly acknowledge the international funding provided by Fujian Agriculture and Forestry University (KXB16001A) and the Department of Science and Technology of Fujian Province (2017H6003), P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanhui Yuan.

Ethics declarations

The authors have no conflict of interest with regards to the submission and publication of this article.

Supporting Information

11814_2019_400_MOESM1_ESM.pdf

Process optimization and synthesis of lanthanum-cobalt perovskite type nanoparticles (LaCoO3) prepared by modified proteic method: Application of response surface methodology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garba, Z.N., Xiao, W., Zhou, W. et al. Process optimization and synthesis of lanthanum-cobalt perovskite type nanoparticles (LaCoO3) prepared by modified proteic method: Application of response surface methodology. Korean J. Chem. Eng. 36, 1826–1838 (2019). https://doi.org/10.1007/s11814-019-0400-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0400-1

Keywords

Navigation